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Isolating the interference caused
by cue duration in partial report:

A quantitative approach
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In bar-probe partial report experiments, subjects are presented with a brief array of letters, followed
by a cue that singles out a target letter. Using this procedure, V. M. Townsend (1973) reported a coun
terintuitive effect: As the duration of a cue was increased, target performance decreased dramatically.
The aim of the present study was to isolate the locus of the cue-duration effect. To this end, several
characteristics of the bar-probe display were manipulated in a single experiment: the interstimulus in
terval between the array and the cue, array density, the number of letters, and the number of symbols
adjacent to the target. These factors were manipulated on a priori grounds so as to affect the different
sources of information used in the bar-probe task-namely, durable storage, abstract identity infor
mation, and feature level information. The data were accurately fit by a simple quantitative, multino
mial model that assumes that the different sources of information used in the bar-probe task make in
dependent contributions to performance. The critical assumption of the model is that cue duration
interferes with only one source of information-namely, feature level information.

In the present research, we investigated the effect of
cue duration in partial report. In the partial report task,
subjects are shown an array of items briefly, followed by
a cue that indicates a portion of the array to be reported
(see, e.g., Sperling, 1960). In the version of this task with
which we are concerned, subjects are cued to report a sin
gle item by a bar pointing to a position in the array (see,
e.g., Averbach & Coriell, 1961). Partial report perfor
mance is commonly held to index the rapid loss of labile
visual information accrued from the brief display (see,
e.g., Coltheart, 1980). However, V. M. Townsend (1973)
reported a counterintuitive result that seems to be incon
sistent with this simple interpretation: Performance was
worse with long-duration cues than with short-duration
cues. This detrimental effect ofcue duration is substantial
and has been replicated numerous times (e.g., Dixon &
Di Lollo, 1991, 1994; Dixon, Gordon, Leung, & Di Lollo,
1997). We present here a quantitative analysis of partial
report performance that isolates the cue-duration effect to
the use ofrapidly decaying information concerning visual
features, as distinct from abstract identity codes or verbal
information.
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Sources ofInformation Used in Partial Report
Our analysis follows from the common theoretical as

sumption that performance in partial report tasks reflects
the contribution of multiple sources of information (see,
e.g., Coltheart, 1980; Dixon & Di Lollo, 1991, 1994;
Irwin & Yeomans, 1986; Mewhort, Campbell, Marchetti,
& Campbell, 1981; Sperling, 1960). Early theoretical
analyses presumed that performance depended on two
sources of information: a stable but incomplete store of in
formation and a more labile but comprehensive store. On
this analysis, the stable information is related to the level
ofperformance that occurs when subjects attempt to recall
all ofthe items in the array (i.e., the so-called whole report
performance), whereas the labile form corresponds to the
information that is lost quickly after the offset of the array.
Subsequent research has provided evidence on the nature
of the stable and labile components.

Initially, the stable store of information was identified
with the contents ofverbal short-term memory (see, e.g.,
Sperling, 1967), but there are good reasons to suspect
that this notion is not completely correct. For example, in
whole report from briefly presented arrays, performance
declines only slightly when subjects must simultaneously
maintain a set of verbal items (Scarborough, 1972), and
the patterns of errors reflect visual display factors rather
than verbal confusions (Wolford, 1975). Similarly, partial
report performance at long delays should reflect primar
ily the contribution of the stable component. However,
such performance is only minimally affected by articula
tory suppression (see, e.g., Dixon & Shedden, 1993), sug
gesting that the stable component is not based solely on
articulatory or phonological codes. Thus, it seems likely
that a substantial portion of the stable information in par-
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tial report is composed of some form of nonverbal in
formation, even though it is likely to be distinct from the
rapidly lost information about visual form. We suspect
that this information is more abstract than visual feature
information and is similar to verbal codes, in that it indi
cates the identity of items in the display. We refer to this
information as abstract identity codes.

The notion that abstract identity codes contribute to
partial report performance is not a new one. For example,
Mewhort et aI. (1981) incorporated identity codes into
their dual-buffer model of performance in the bar-probe
task. In their model, information in a precategorical fea
ture buffer is processed and transformed into abstract
identity codes that are stored in a character buffer. A sim
ilar idea was proposed by Irwin and Yeomans (1986). The
main difference between the model ofMewhort et aI. and
that ofIrwin and Yeomans is in the role of the partial re
port probe. Mewhort et aI. proposed that the probe is used
by an attentional mechanism to select information for
transfer from the character buffer to durable storage. Irwin
and Yeomans, on the other hand, hypothesized that the
probe first directs translation from feature information to
abstract identity information and then guides the transfer
of information into durable storage. Nevertheless, both
models share two assumptions concerning the nature of
the mental representations. The first is that abstract iden
tity codes represent a relatively stable source ofnonverbal
information. Thus, there should be relatively little loss of
abstract identity information with increasing cue delay.
The second assumption is that the location information
associated with abstract identity codes is relatively coarse
or impoverished. This accounts for the common finding
that the ability to locate items in the visual field declines
markedly with an increasing interstimulus interval (lSI),
even though the ability to report on item identities does not
(e.g., V. M. Townsend, 1973). Presumably, performance
at short delays reflects the contribution ofmore precisely
located information about visual form.

The other major source of information used in partial
report could be construed as labile feature information.
Traditionally, this type ofinformation is assumed to be pre
categorical in nature. Moreover, it is often assumed that
this information decays soon after the offset of the dis
play (see, e.g., Irwin & Yeomans, 1986). However, a va
riety of research has identified not one, but two kinds of
decay that affect performance. First, features may simply
be lost over time, and as a consequence, identification of
the corresponding visual form would have to based on in
complete information. Second, visual features may drift
and be incorrectly combined with features from other lo
cations (see, e.g., Irwin & Yeomans, 1986; Wolford, 1975;
cf. Treisman & Schmidt, 1982). These mechanisms pro
vide a basis for explaining the contribution ofperceptual
factors to partial report performance. For example, when
the stimulus onset asynchrony (SOA) between a partial
report display and a subsequent pattern mask is increased,
accuracy improves, and intrusion errors decrease (Me
whort et aI., 1981). Presumably, the increased display-

CUE-DURATION INTERFERENCE 221

mask SOA allows more accurate identification of visual
feature information. Similarly, both intrusion and trans
position errors decline with increasing spacing between
the target and adjacent items (see, e.g., Irwin, 1992); it
seems likely that the increased spacing reduces the likeli
hood offeatures drifting and combining incorrectly with
the information at other locations.

A Unifying Framework
for Models of Partial Report

Following from our analysis of the literature, it seems
reasonable to assume that verbal, abstract identity, and
labile feature information are major contributors to per
formance in partial report. Building on this assumption,
we construct a simple conceptual framework for describ
ing partial report performance. We refer to this frame
work as the tripartite framework of partial report. The
framework provides a foundation for our quantitative
analysis of the effect of cue duration. In the following
paragraphs, we provide a more detailed description ofthis
approach.

The tripartite framework follows from the work of
Di Lollo and Dixon (1988; Dixon & Di Lollo, 1991).
Di Lollo and Dixon assume, as do we, that partial report
performance is based on multiple sources of information.
In their terms, performance is based on visible persistence,
visual analog representation (or schematic persistence;
Dixon & Di Lollo, 1991), and durable storage. In our
terms, these sources of information represent labile fea
ture information, abstract identity information, and ver
bal information, respectively. Regardless of the labels
used to identify the different sources of information, the
assumptions on which the framework is founded are very
similar. First, the different sources of information are in
dependent. The same assumption has also been made by
Irwin and Yeomans (1986; Yeomans & Irwin, 1985).
Second, the contents of anyone of, or all, the sources of
information can be used to generate a response (Di Lollo
& Dixon, 1988; Dixon & Di Lollo, 1991). In our frame
work, we elaborate this assumption by allowing that re
sponses generated from a source ofinformation need not
be correct and that errors might occur because informa
tion from a source is distorted or inaccurate.

These assumptions not only have intuitive appeal, but,
more importantly, allow for the generation ofsimple quan
titative models. For example, the independence assump
tion entails that partial report performance is equal to the
sum of the contributions of the different sources of in
formation. Further assumptions regarding the nature ofthe
sources of information allow specific models to be gen
erated concerning the effects of particular independent
variables. For example, Di Lollo and Dixon (1988) as
sumed that visible persistence decayed from the onset of
a stimulus, whereas the visual analog decayed from the
offset ofa stimulus. As a consequence, they predicted that
the lSI between the array and the probe should affect per
formance differently than the SOA between the array and
the probe. The resulting quantitative model provided an
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accurate fit to their observed data. Dixon and Di Lollo
(1991) used a similar approach to account for the effects
ofdisplay luminance, stimulus meaningfulness, and probe
duration in a partial report task.

Although Di Lollo and Dixon (1988; Dixon & Di Lollo,
1991) tested specific models, both models can be viewed
as instances of the tripartite framework. As well, the
models ofIrwin and Yeomans (1986) and Mewhort et al.
(1981) embody similar but less precise assumptions. Thus,
the tripartite framework effectively captures and unifies
the common elements ofmuch ofcurrent theorizing con
cerning the mechanisms underlying partial report per
formance. Moreover, the framework can be used as a
starting point for detailed formulations concerning the
effects ofindependent variables. In the approach adopted
here, weconstruct different versions of the tripartite frame
work in which the effect ofcue duration is assumed to be
isolated in different sources ofinformation (verbal, visual
features, or abstract identities). By comparing the ade
quacy ofthe quantitative fits, we can generate inferences
about the nature of the effect and its role in information
processing.

Accounts of the Cue-Duration Effect
In a bar-probe partial report task, as the duration of

the visual probe increases, performance decreases (Y. M.
Townsend, 1973). This result seems counterintuitive, be
cause there is no obvious reason why subjects should be
unable to select information concerning the cued item as
soon as the cue is visible; simply leaving the cue on the
screen would seem to be irrelevant to performance. Fur
thermore, on the basis ofthe empirical evidence, there are
several reasons why the effect cannot be explained by as
suming that subjects wait until the offset of the cue to se
lect items from the array (even granting that there was a
plausible reason to do so). First, the effect ofcue duration
is not equivalent to inserting a comparable lSI; the effect
ofcue duration and the effect oflSI follow different time
courses (Dixon & Di Lollo, 1991). Second, there is little
effect of cue duration when the cue is an item and subjects
decide whether the item is in an array (Y. M. Townsend,
1973). Third, the simple expedient of making the bar
longer decreases the size of the effect, and it is largely
absent if the cue is spatially distanced from the item
(Dixon et al., 1997). And fourth, the cue duration effect is
much smaller when items are presented foveally rather
than in the periphery (Di Lollo & Dixon, 1993). Thus,
there is a complex pattern of effects and interactions that
is not explained simply by assuming that long-duration
cues impose some type of delay of processing.

In view of these kinds of results, a variety ofaccounts
of the effect of cue duration have been proposed in the
partial report literature. These various accounts make dif
ferent predictions concerning which source of informa
tion is involved. Y. M. Townsend (1973) suggested that the
long-duration cues interfered with the process of locat
ing visual identity codes. On this hypothesis, the target's

identity code must be conjoined with the correct location
code. Y. M. Townsend assumed that the identity code re
mains relatively intact over time, whereas the location code
becomes unreliable. Consequently, after a long-duration
cue, subjects are less likely to conjoin the location code
with the correct identity code. In our terms, this means that
long-duration cues should decrease the utility ofabstract
identity information and, moreover, that the contribution
of this store is specifically affected by cue duration.

Dixon and Di Lollo (1994) presented an account of
the cue-duration effect that was based on the concept of
temporal integration. They assumed that partial report
performance improves whenever the array stimulus is
temporally integrated with the cue, forming a single phe
nomenal whole. In order to account for the effect of cue
duration, they proposed a quantitative model ofhow tem
poral integration is affected by the temporal configura
tion of the stimuli. In their approach, visual stimuli gen
erate responses in the visual system that rise and fall
relatively slowly. Consequently, visual responses may
overlap substantially, even when the physical stimuli are
disjoint in time. If the overlap is sufficiently extensive
(as measured by a temporal correlation coefficient), the
successive stimuli will be integrated into a single phe
nomenal whole. Similar ideas have been proposed by
Groner, Bischof, and Di Lollo (1988) and Wolford (1993).
The crucial element of this approach for the current in
vestigation is that Dixon and Di Lollo (1994) argue that
partial report performance is likely to be accurate if the
array and the cue are temporally integrated and that this
integration is more likely when the duration of either is
brief. The net result is that a long-duration cue is less likely
to be integrated with the array and does not enjoy the per
formance advantage ofa brief cue. In our terms, the tem
poral integration approach implies that long-duration cues
lead to a decrease in the ability to use visual feature infor
mation in the array.

Finally,the effect of cue duration has also been analyzed
in terms of attentional processes. Dixon et al. (1997) re
ported eight experiments manipulating whether the en
dogenous or exogenous attentional system was used to
select information from the array. Endogenous selection
can be characterized as selection that is under voluntary
control, whereas exogenous selection can be considered
a reflexive response to external stimuli (see, e.g., Posner,
1980). Dixon et al. (1997) reported that an effect of cue
duration was found only under conditions that favored ex
ogenous selection. For example, an effect was found with
a peripheral cue near the target location but was not found
when the cue was near fixation and spatially removed
from the target location; an effect of cue duration was
found when the cue was uninformative, but not when the
cue required some cognitive interpretation. Although these
results strongly suggest the involvement of the exoge
nous selection system, it seems likely that attention is in
volved in selecting information both from visual identities
and from visual features. Thus, the data and account of-



fered by Dixon et al. are neutral with respect to the nature
of the information involved in the effect: Either or both
sources of information might be involved.

Plan of the Present Research
The aim ofthe present research was to isolate the source

of information with which long-duration visual cues in
terfere. This was done by manipulating the temporal and
visual parameters of the partial report task that are likely
to affect either abstract identity codes or visual feature
information. In order to evaluate the results, quantitative
models were fit to the results. These models were based
on the assumptions of the tripartite framework described
above. What is important to note is that we use the tripar
tite framework as a basis of analysis; we believe the fun
damental tenets of the framework are justified by a large
body of empirical and theoretical work on partial report.
Thus, we are not evaluating the framework per se but, in
stead, different models generated within the framework.
As will be shown below, the best-fitting model incorpo
rates the assumption that long-duration cues reduce the
amount of visual feature information available to partial
report but have no effect on abstract identity information.
Consequently, on the basis ofthe model fits, we argue that
long-duration cues interfere with visual feature infor
mation and do not interact with variables that affect only
abstract identity information.

The central manipulation in this investigation involves
the distance in the visual display between the target item
and neighboring distracting information. A variety ofre
search has shown that flanking information reduces the
accuracy ofreporting items from briefvisual displays. 1.T.
Townsend, Taylor, and Brown (1971) found that identi
fication accuracy improves when the flankers surround
ing a target letter are replaced by blank spaces. That is to
say, performance improves when the likelihood for local
contour interactions decreases. Other research reports
that when a target letter is surrounded by visually simi
lar letters, identification accuracy is lower than if the tar
get is flanked by letters that are visually dissimilar to the
target (e.g., Estes, 1982; Krumhansl & Thomas, 1977).
Still other researchers suggest that feature information
drifts and may be recombined incorrectly with adjacent
features (Irwin & Yeomans, 1986). Wolford (1975) also
states that features of array items adjacent to the target
interfere with the constituent features of the target, lead
ing to an inaccurate report. On the basis of these results,
the prediction in the present work becomes: As array den
sity is increased, performance should decline. Following
this research, we assume that abstract identities are af
fected by the proximity of other identity codes, whereas
visual feature information is affected by the proximity of
other visual features.

The partial report displays were constructed to provide
independent manipulations of interference among ab
stract identity codes and interference among visual fea
tures. The array consisted ofeither 6 or 12 letters, together
with a number of instances of the filler character #. The
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total size of the array, counting both letters and fillers,
was either 18 or 24 items. The array items were arranged
in circular pattern around fixation, so that the distance be
tween adjacent items in the 24-item array was 25% less
than that in an 18-item array. We assumed that this ma
nipulation of distance would affect the accuracy of vi
sual feature information. However, we also assumed that
abstract identity information would be affected only by
the proximity of nearby letters and would be relatively
unaffected by adjacent fillers. Consequently, we manipu
lated whether there was 0, 1, or 2 filler items adjacent to
the target item. Accuracy of abstract identity informa
tion should increase with the number of flanking fillers,
whereas the accuracy ofvisual feature information should
be less affected.

We also manipulated the lSI between the array and the
cue. This manipulation provides another way of distin
guishing visual feature information and abstract identi
ties, because visual feature information is likely to decay
quickly with increasing lSI, whereas abstract identities are
assumed to be more stable. For example, Sperling (1960)
reported that as lSI increased, performance declined,
eventually reaching an asymptote comparable with whole
report performance. We argued earlier that it is likely that
this asymptotic level ofperformance reflects a stable but
nonverbal source ofinformation. Performance at short de
lays, however, is more likely to reflect the use ofboth la
bile feature information and abstract identity informa
tion. Consequently, ifthe effect ofcue duration interferes
primarily with labile feature information, the effect of
cue duration should be more pronounced at short ISIs.

METHOD

Subjects
Seventeen undergraduates from the University of Alberta subject

pool participated for class credit. All had normal or corrected-to
normal vision, based on self-report.

Stimuli
The stimuli were presented dark-on-light on a 33-cm mono

chrome video monitor. The space-average luminance of the stimuli
was 29 cd/m-, and the space-average luminance of the light back
ground was 53 cd/m-. Stimuli were uppercase letters of the English
alphabet and filler items (all fillers were #s). Both letters and fillers
were presented in 18-point Times font. Viewed at a distance ofap
proximately 50 em, items subtended approximately 0.69° vertically.
Stimuli were presented on the perimeter ofa notional circle ofa ra
dius of2.95°, The cue was a radial line that started 1.91° from the
center of the circle, was 0.59° in length, and terminated approxi
mately 0.45° from the center of the target letter. Letters presented
in the array were selected randomly each trial, under the constraint
that no letter appearedneutral more than once in the array. The po
sition of the target was also randomized on each trial.

Procedure
The subjects started each trial by pressing the mouse button. A

central fixation dot remained on the screen for 450 msec. Follow
ing the offset of the fixation dot, the stimulus array was presented
for 30 msec. After the array, a cue was presented for either 30 or
330 msec. The array and cue were separated by an lSI of 0 or
810 msec. After the stimulus sequence, five response alternatives
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ditions. The standard errors for each mean are computed
from the error term in a repeated measures analysis of
variance and are appropriate for pairwise comparisons
(Loftus & Masson, 1994). Generally, all of the factors
had substantial effects on performance. The only excep
tion was number of letters; accuracy was only 2.2% bet
ter with 6 items than with 12.

In addition to the main effects, there were several in
teractions that must be noted. Cue duration and lSI inter
acted, so that, in the O-msec lSI condition, the effect of
cue duration was 18.9%, whereas, in the 81O-msec lSI
condition, the cue-duration effect was only 2.5%. Array
density also interacted with lSI. The effect of array den
sity was larger at short cue delays (9.5%) than at long
cue delays (2.8%). Cue duration interacted with the
number of flankers adjacent to the target. Although over
all performance improved as the number of flankers in
creased, the effect of cue duration declined as the num
ber of flankers increased. The cue-duration effect was
13.5% with two filler items, 9.7% with one filler, and
8.8% with zero fillers. The number of flankers also in
teracted with array density: With zero flankers, the ef
fect of array density was 3.4%; with one flanker, it was
8.6%; and with two flankers, it was 6.5%. There was also
a three-way interaction between array density, cue dura
tion, and lSI. With no cue delay, the effect of cue dura
tion was larger in the low-density condition (21.5%) than
in the high-density condition (16.2%). On the other hand,
with an 810-msec cue delay, the effect of cue duration
was the same in the low- and high-density conditions
(1.6% and 3.4%, respectively).

The trends in the transposition data are not as easy to
interpret, because the number oftranspositions is directly
related to the number ofoverall errors (i.e., transpositions
and intrusions). Thus, the theoretical importance ofsub
tle trends in transpositions must be tempered by that re
lationship. With that in mind, the main pattern of inter
actions observed in the transposition data mirrors the
patterns observed in the accuracy data. lSI interacted with
cue duration and array density. When there was no cue
delay, the effect ofcue duration was 11.2%, as compared
with 2.7% when there was an 810-msec delay. Similarly,
when there was no cue delay, the effect ofarray density was
6.8%, as compared with 1.9% when there was an 810
msec delay. Cue duration also interacted with the number
of flankers: The effect of cue duration was 4% with no
flankers, 6.8% with one flanker, and 10.3% with two
flankers. Finally, as the number of flankers increased, the
effect of array density decreased. When there were no
flankers, the effect of array density was 1.8%, as compared
with an array density effect of6.8% with one flanker and
4.4% with two flankers adjacent to the target.

A Quantitative Implementation
of the Tripartite Framework

In order to disentangle and interpret the interactions
observed in the results, a quantitative model based on the
tripartite framework described in the introduction was fit
to the results. In the model, we assume that three sources
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Tables 1 and 2 present the mean accuracy and mean
transposition errors, respectively, in each of the 48 con-

were presented on the screen, consisting ofthe target letter, the two
letters that were presented nearest the target, and two randomly se
lected letters that did not appear in the array. The subjects indicated
their response by clicking, with a computer mouse, on the letter that
they thought was cued. The subjects were instructed to make their
best guess if they were unsure of the correct answer. The subjects
were able to pause as needed between trials, with longer breaks en
couraged after each block of48 trials.

Design
There were a total of48 conditions in the experiment, consisting

of the factorial combination of the following display characteris
tics: Number of flanking fillers (0, I, or 2), cue duration (30 or
330 msec), number ofletters in the array (6 or 12), number of items
in the array (18 or 24), and the lSI between the array and the cue (0
or 810 msec). The number of flanking fillers was randomized
within each block; the other factors were varied between blocks. An
example ofa stimulus configuration is shown in Figure I.

Subjects completed 17 blocks of48 trials, the first being a prac
tice block. Each block consisted of 16 trials each with 0, 1, and 2
flanking fillers presented in a random order. The practice block
used 18 item arrays with six letters, a 30-msec cue, and a O-msec
lSI. The succeeding 16 blocks consisted of the factorial combina
tion of the cue duration, letters, items, and lSI factors. The presen
tation order of these blocks was randomized for each subject.

RESULTS AND DISCUSSION
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Table 1
Predicted and Observed Proportion of Correct Responses as a Function

of Flankers, Letters, Array Density, Cue Duration, and Interstimulus Interval (lSI)

Cue Responses Standard
lSI Flankers Letters Density Duration Predicted Observed Error

0 0 6 18 30 .548 .581 .029
0 0 6 18 330 .342 .357 .029
0 0 6 24 30 .439 .434 .030
0 0 6 24 330 .305 .287 .019
0 0 12 18 30 .548 .507 .037
0 0 12 18 330 .342 .346 .025
0 0 12 24 30 .439 .467 .033
0 0 12 24 330 .305 .265 .025
0 I 6 18 30 .607 .629 .036
0 I 6 18 330 .382 .408 .039
0 I 6 24 30 .481 .445 .037
0 1 6 24 330 .334 .360 .039
0 I 12 18 30 .607 .625 .027
0 I 12 18 330 .382 .386 .030
0 I 12 24 30 .481 .482 .034
0 1 12 24 330 .334 .290 .034
0 2 6 18 30 .666 .658 .041
0 2 6 18 330 .422 .437 .040
0 2 6 24 30 .523 .552 .033
0 2 6 24 330 .364 .371 .036
0 2 12 18 30 .666 .636 .021
0 2 12 18 330 .422 .412 .038
0 2 12 24 30 .523 .526 .028
0 2 12 24 330 .364 .357 .013

810 0 6 18 30 .283 .291 .028
810 0 6 18 330 .283 .265 .037
810 0 6 24 30 .266 .291 .032
810 0 6 24 330 .266 .320 .034
810 0 12 18 30 .283 .257 .032
810 0 12 18 330 .283 .283 .030
810 0 12 24 30 .266 .276 .033
810 0 12 24 330 .266 .276 .033
810 1 6 18 30 .318 .327 .029
810 1 6 18 330 .318 .342 .020
810 I 6 24 30 .292 .294 .045
810 I 6 24 330 .292 .301 .018
810 I 12 18 30 .318 .312 .024
810 I 12 18 330 .318 .327 .033
810 1 12 24 30 .292 .287 .038
810 I 12 24 330 .292 .210 .030
810 2 6 18 30 .352 .386 .022
810 2 6 18 330 .352 .334 .025
810 2 6 24 30 .318 .397 .033
810 2 6 24 330 .318 .279 .023
810 2 12 18 30 .352 .390 .038
810 2 12 18 330 .352 .316 .038
810 2 12 24 30 .318 .305 .032
810 2 12 24 330 .318 .261 .032

of information contribute to performance: verbal infor
mation, visual identity information, and visual features.
Thus, the probability correct can be written as

P(C) = V + (I - V) 1 + (I - V)(I- I)F

+ (I - V)(I- 1)(1 - F)k, (I)

where V, I, and F correspond to the probability of infor
mation pertaining to the target item being available in
verbal, identity, or feature information sources and k is
the probability ofguessing correctly (k =.2 in the present
paradigm). This development is similar to the assumptions

used by Di Lollo and Dixon (1988). However, we also
assumed that even when information was available from
an information source, errors might occur because that
information was inaccurate. Consequently, Equation I was
modified to include an accuracy factor for each source of
information:

P(C) = Vw + (I - V)lj + (I - V)(I - I)Fg

+ (I - V)(l- 1)(1 - F)k. (2)

In order to use this model in understanding our results,
we made specific assumptions about how these elements
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Table 2
Predicted and Observed Proportion of Transposition Errors as a Function

of Flankers, Letters, Array Density, Cue Duration, and Interstimulus Interval (lSI)

Errors

lSI Flankers Letters Density Cue Duration Predicted Observed Standard Error

0 0 6 18 30 .331 .323 .032
0 0 6 18 330 .424 .434 .028
0 0 6 24 30 .386 .408 .026
0 0 6 24 330 .454 .500 .029
0 0 12 18 30 .331 .353 .033
0 0 12 18 330 .424 .364 .030
0 0 12 24 30 .386 .331 .026
0 0 12 24 330 .454 .445 .045
0 I 6 18 30 .279 .213 .028
0 I 6 18 330 .381 .393 .033
0 I 6 24 30 .348 .375 .033
0 I 6 24 330 .422 .382 .027
0 I 12 18 30 .279 .221 .024
0 I 12 18 330 .381 .386 .034
0 I 12 24 30 .348 .346 .028
0 I 12 24 330 .422 .452 .024
0 2 6 18 30 .228 .198 .035
0 2 6 18 330 .338 .338 .029
0 2 6 24 30 .310 .261 .029
0 2 6 24 330 .389 .408 .030
0 2 12 18 30 .228 .228 .026
0 2 12 18 330 .338 .342 .033
0 2 12 24 30 .310 .268, .022
0 2 12 24 330 .389 .434 .024

810 0 6 18 30 .462 .489 .023
810 0 6 18 330 .462 .566 .032
810 0 6 24 30 .482 .537 .035
810 0 6 24 330 .482 .467 .040
810 0 12 18 30 .462 .474 .029
810 0 12 18 330 .462 .467 .032
810 0 12 24 30 .482 .471 .032
810 0 12 24 330 .482 .460 .045
810 I 6 18 30 .423 .415 .024
810 I 6 18 330 .423 .419 .027
810 I 6 24 30 .452 .493 .041
810 I 6 24 330 .452 .467 .026
810 I 12 18 30 .423 .415 .025
810 I 12 18 330 .423 .437 .032
810 I 12 24 30 .452 .427 .034
810 I 12 24 330 .452 .507 .034
810 2 6 18 30 .383 .346 .025
810 2 6 18 330 .383 .416 .028
810 2 6 24 30 .423 .386 .033
810 2 6 24 330 .423 .434 .018
810 2 12 18 30 .383 .346 .030
810 2 12 18 330 .383 .452 .043
810 2 12 24 30 .423 .397 .033
810 2 12 24 330 .423 .430 .036

of the model would be affected by the experimental ma
nipulations. In particular, we expected that the quantity and
accuracy of verbal information, as well as the amount of
identity information extracted from the display, would be
unaffected by the factors manipulated here; in other words,
V, w, and I were assumed to be constant. However, we an
ticipated that}, the accuracy ofvisual identity information,
would be affected primarily by letter transpositions and
that such transpositions would be a function ofthe distance
between the target item and adjacent letters. Target
letter distance was primarily a function of whether the

items adjacent to the target were letters or fillers but was
also affected to a certain extent by the total number of
items in the array. As a simple approximation, we assumed
that accuracy is a linear function ofd, the average distance
to the nearest letter on either side:

}=a+f3d=a+f3e~D)(2;r). (3)

where D is the number of flanking fillers (0, 1, or 2), r is
the radius of the circular array (2.95°), and N is the num
ber of items in the array (18 or 24). Although we assumed
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However, when the flanking stimulus is a filler character,
the target is likely to be confusable only when it comes
from the group ofhorizontallvertical letters. Consequently,
the probability of the target not being confusable with an
adjacent filler is just the probability that the target is not
a horizontal/vertical letter:

a linear function, other functional relationships, such as
an exponential or Gaussian, are likely to be more accurate
(see, e.g., Ashby, Prinzmetal, Ivry, & Maddox, 1996).
However, the limited range of interletter distance exam
ined in the present study makes it difficult to distinguish
empirically which of several plausible relationships would
be most appropriate. For this reason, a simple linear func
tion was used as an approximation to the true relationship.

A second assumption was that F, the amount of avail
able feature information, would decline with increasing
lSI. We use the notation Foto refer to the information avail
able at 0 lSI and F S IO to refer to the information available
at the long, 810-msec lSI. Previous research has shown
that most ofthe loss of information in partial report occurs
within the first few hundred milliseconds (e.g., Dixon &
Di Lollo, 1991); consequently, we assumed that F S IO= O.

Finally, we assumed that the accuracy ofthe feature in
formation, g, would be affected by feature confusions be
tween the target and adjacent items and that such confu
sions would be more likely to occur when items are close
together than when they are farther apart. We approxi
mated this accuracy function as a linear function of item
separation, s. Thus,

It seemed likely that the accuracy of feature informa
tion would also vary with the nature ofthe flanking items.
In particular, we expected that feature confusions would
be much more likely to affect the accuracy oftarget report
when the adjacent items were visually confusable with the
target than when they were dissimilar. Because the filler
item, #, is similar to only some letters ofthe alphabet, fea
ture confusions should be less likely to affect the accuracy
of report when the adjacent item is a filler than when it
is a letter. In order to generate an estimate of the relative
confusability of the fillers and letters, we divided letters
into three groups on the basis of visual similarity. These
groups consisted of letters consisting of only horizontal
and vertical line segments (E, F, H, I, L, T), letters con
taining diagonal elements (A, K, M, N, V,W, X, Y,Z), and
letters containing curved segments (B, C, D, G, J, 0, P, Q,
R, S, U). We assumed that accuracy ofreporting the cor
rect item would be related to the likelihood that the target
and the flanking stimulus come from different groups.
When the flanking stimulus is another letter, the probabil
ity ofnot being visually confusable (i.e., coming from dif
ferent groups) is

c, = 1- [(;J+(;J+ (~~)l65

At 0 lSI, there two additional terms representing the con
tribution of feature information:

(6)

(8)

(9)

I' = (I - V) 1/3.

P(C) = V' + I'd.

N' = (I - V)(I - I) FoY·

V'= Vw+(I - V)Ia+(I - V)(I - I)k. (5)

The second parameter reflects the increase in accuracy
of identity information with increasing distance:

P(C) = V' + I'd + F'CD+ N'CDs. (10)

This framework can also be used to predict the rate of
transposition errors. In particular, transposition errors
are primarily related to inaccurate identity information,
as described above; following from Equation 2, the prob
ability of a transposition error arising from inaccurate
identity information would be (I - V) I (I - j). How
ever, transpositions can also occur by chance whenever
subjects guess. In the present paradigm, subjects select
their response from among five alternatives, consisting
of the target, the two flanking items, and two items not
in the array. Consequently, the probability of an error
being a transposition when subjects are guessing is .5.
Guessing would occur in two ways. First, subjects would

CF =1- C6
J =.77.

This confusability factor was incorporated into the ac
curacy of feature information by assuming that the accu
racy was cLgNwhen the adjacent items were letters (where
N is either 18 or 24), cFgN when the adjacent items were
fillers, and halfway in between when the target was flanked
by a filler on one side and a letter on the other. We refer
to this visual confusability factor as CD' defined as

I
CF,target flanked by filler characters I

CD = CL. target flanked by letters .

CL +c F--2- , target flanked by one filler and one letter

There are four identifiable parameters in this model.
The first reflects the overall level ofperformance and is
determined by the verbal information source together
with the constant portion of the identity information, as
follows:

The third reflects the amount offeature information avail
able at 0 lSI:

F' = (I - V)(I - I)Foe - (I - V)(I - I)Fok. (7)

Finally, the fourth parameter is the increase in feature ac
curacy with spatial separation between adjacent items:

Putting these equations together, the total accuracy at
810-msec lSI is

(4)g=e+ys=e+y2nrlN.
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have to guess when they have no information pertaining
to the target; from Equation 2, the probability of having
no information is the term (1 - V)(1 - 1)(1 - F), and con
sequently, the probability of a transposition being gener
ated in this case would be (1 - V)(1- l)(1 - F)(1 
k)/2. Guessing can also occur when subjects have inac
curate feature or verbal information, because the item
suggested by their information would not be among the
alternatives. From Equation 2, the probability of having
inaccurate feature or verbal information is V(1 - w) +
(I - V)( 1- I)F( I - g), and the probability of a trans
position error resulting from these kinds oferroneous in
formation would be half of that [V( I - w)/2 + (1 - V)
(1- I)F( I - g)/2]. Thus, the total probability ofa trans
position error would be the sum of these terms:

P(T) = (1- V)I(1- j) + -,--(1_-_V-,--)(I_-_I-,--)(I_-_F-,--)(-,--I-_k---=-)
2

V(1-w) (1-V)(1-1)F(1-g)
+ + .

2 2

Many of the elements in this equation also appear in Equa
tion 2 for the probability correct, and by rearranging the
terms, this equation can be rewritten as

P(T)=-l[I-P(C)] + (I-V)I(1-n
2 2

Using Equation 3 to expandj, this becomes

p(T)=l[l-p(C)] + (I-V)I(1-a- f3d).

2 2

Because V and I were assumed to be constant across the
conditions used here, the probability ofa transposition can
be written as

P(T) = T' _ P(C) _ (1- V)If3d ,
2. 2

where T' is a constant term defined as

T = 1 + (1- V)I _ (1- V)Ia .
2 2 2

Finally, "from Equation 3, the probability of a transposi
tion is

P(T) = T' _ P(C) _ I'd.
2 2

In this development, T' determines the overall level of
transposition errors and is the only parameter that needs
to be estimated beyond those identified in Equations 5-10.

We refer to the assumptions embodied in this quantita
tive development ofthe tripartite framework as the tripar
tite model ofpartial report, based as it is on the view that
performance depends on the conjunction of verbal in
formation, abstract identity information, and feature in
formation. Below, we compare several ways of incorpo
rating effects of cue duration in this general framework.

Modell: Effects on Visual Feature Information
One plausible working hypothesis is that the effect of

cue duration interferes with labile visual feature informa
tion. There are several possible mechanisms that could
be at work here. For example, it could be the case that a
long-duration cue makes it difficult to align the array and
the cue in a temporally integrated visual percept (see, e.g.,
Dixon & Di Lollo, 1994). Another possibility is that the
cue acts as a mask and that a long-duration cue is more
effective in that role. Still another possibility is that, when
using a long-duration cue, selection occurs over a longer
period of time and that, during this time, feature informa
tion becomes unreliable (Dixon et aI., 1997). Although
the manipulations used in the present study do not per
mit us to distinguish these possibilities, using the present
approach, we can evaluate the assumption common to
these different accounts-namely, that the cue-duration
effect reduces the utility of feature level information.

To test this hypothesis, Model I incorporates the effect
of cue duration into the visual feature source of informa
tion. In terms ofmodel parameters, making this assump
tion requires that the last two terms in Equation lObe
multiplied by an additional factor, P', in the long-duration
cue conditions. That is, accuracy for long cue durations
should be

P(C) = V' + I'd + P'F'CD+ P'N'CDs. (12)

The model generated by Equations 9, 10, and 12 was fit
to the obtained data shown in Table I, using a gradient
descent procedure that maximized the likelihood of the
data. Likelihoods were calculated on the assumption that
each data point consisted ofan independent sample from
a binomial distribution. In other words,

L(Xi) = C~}nXiri(n -nXjt
Pi,

(13)

where Xi is the observed accuracy rate and Pi is the pre
dicted accuracy rate for each condition i; since the data in
each condition are independent, the total likelihood is the
product ofthe likelihoods for each condition [L= nL(Xj)].
The actual fitting was done with the logarithm of this
likelihood; this allowed us to estimate parameters by sim
ply maximizing the sum of the log likelihood for each of
the conditions-that is, log L= 1:logL(Xi ) .

The parameter estimates for Model I are shown in
Table 3, and the overall fit of the model is shown in Fig
ure 2. (In this and subsequent plots, the data are collapsed
over number of letters in the array, since this factor had
little effect on performance.) The root-mean squared de
viation from the model predictions was .029 with an R2
value of .932. A chi-square goodness-of-fit test revealed
that the observed data did not significantly differ from the
predictions made by Modell [X 2(43) = 33.27,p > .85].
The accuracy ofthe fit can be seen in Figure 2, where vir
tually all the observed data points are within a standard
error of the predicted values. Indeed, the greatest differ
ence between observed and predicted for the 24 points
was .041. In order to illustrate the account the model pro-
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vides ofthe experimental results, we provide leverage plots
below for the predicted effects related to feature and iden
tity information.

Care must be taken in interpreting the values of the
parameters in Table 3 in terms of the processes assumed
in the model. For example, the parameter F' is determined
in part by the intercept of the linear function relating ac
curacy of feature information to item separation (i.e., e
in Equation 4). It is plausible to assume that this inter
cept value is close to zero, since the discriminability of
visual features should become quite low as the item sep
aration becomes very small. However, because ofthe man
ner in which the model is parameterized, F' reflects not
just the value of this zero intercept, but rather the mag
nitude ofe, relative to the accuracy ofguessing, k. Thus,
the negative value ofF' indicates that the accuracy ofre
sponding based on feature information (when the item
separation is 0) is less than the accuracy that would be ob
tained simply by guessing; in other words, e must be less
than k in Equation 5.

Figure 3 shows the leverage for the identity source of
information. The data points indicate the observed values,
less the predicted accuracy due to feature information. The
curve shows the predicted linear function V' + I'd (i.e.,
the predicted values, less the accuracy attributed to fea
ture information). A leverage plot of this sort allows one
to assess how successful a particular model component
is in accounting for effects in the data. For example, the
generally accurate fit in this case demonstrates that there
is little systematic effect of cue duration that cannot be
attributed to feature information. Similarly, the fit also
shows that the effect of interletter distance isolated by the
model does not interact with lSI; although the long-lSI
data are somewhat noisier, there is little apparent system
aticity to the deviations from the predicted line.

Figure 4 shows the leverage for the feature source of
information. Analogous to Figure 3, this figure shows the
observed data points, less the predicted accuracy due to
identity information (i.e., I'd) and scaled for equivalent
values of visual confusability (i.e., CD is removed from
the predicted and observed values). The curves on the
left show the predicted linear functions of interitem sep
aration [P(C) = V' + F' + N's and P(C) = V' + P'F' +
P'N's]. The curve on the right shows the predicted con
stant level ofperformance at long ISIs (V'). The accurate
fit shows that there is little effect of cue duration at long
lSI, and that at short ISIs, the effect of cue duration in
teracts with separation. In particular, the interaction be-

Table 3
Estimated Model Parameters
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tween cue duration and separation has the overadditive
form characteristic ofa multiplicative effect like that pre
dicted in Equation 11. The qualitative form of the inter
action is predictable from the intuitive notion that effects
are likely to be smaller when the overall level of perfor
mance is low; for example, interitem separation has less of
an effect on long cue duration trials than on short cue du
ration trials. In effect, the model provides a precise for
mulation of this intuition in the assumption of a multi
plicative relationship between cue duration and feature
information.

Although the multiplicative interaction between cue
duration and interitem separation supports Model I, it
might be argued that the multiplicative interaction ob
served in these results is a function of the response scale
and that such an interaction would not be observed ifpro
portion correct were rescaled in some fashion (see, e.g.,
Loftus, 1985). We cannot rule out this possibility. How
ever, it is our view that such rescaling requires a theoret
ically guided appraisal ofhow proportion correct is related
to the underlying processes and constructs; such an ap
praisal is necessary, for example, to select the appropriate
scale transformation and to interpret the rescaled results.
With this in mind, the tripartite framework already entails
specific assumptions concerning how proportion correct
is related to underlying process and representations; con
sequently, further rescaling is not necessary. Indeed, the
decomposition of the patterns of accuracy, as shown in
Figures 3 and 4, is a type of (theoretically motivated)
rescaling in terms ofunderlying theoretical constructs. Al
though it is certainly possible to select a different transfor
mation (and to have different patterns ofresults by virtue

.90 .----------"'"7""-----"

Figure 2. Predicted versus observed accuracy for Model 1.
Data points in the 810-msec interstimulus interval conditions are
offset.2 for clarity. Error bars in this and subsequent figures rep
resent standard errors, on the procedure suggested by Loftus and
Masson (1994) for repeated measures designs.
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Figure 4. Leverage plot for the feature source ofinformation as
a function of interstimulus interval, cue duration, and the visual
angle between the target and the nearest item. Data points indi
cate the observed values, less the predicted accuracy owing to
identity information. Solid lines represent the values predicted
by Model I, less the predicted accuracy owing to identity infor
mation.

codes. Such a model might correspond, for example, to
the hypothesis advanced by V M. Townsend (1973). In
terms ofmodel parameters, this hypothesis suggests that,
with long-duration cues, accuracy should not improve
less as interletter distance is increased; in other words, I'
in Equations 9 and 10 should be smaller. To capture this
hypothesis, the second term in Equations 9 and 10 was
multiplied by P' (rather than the third and fourth terms
as in Model I). That is, Equation 9 became

P(C) = V' + P'I'd,

and Equation 10 became

P(C) = V' + P'I'd +rCD+ N'CDs.

This model was fit, using the same procedure as before.
The overall fit of this model was substantially worse

than that of Model I, with a root-mean squared deviation
of .047 and an R2 value of .808. This conclusion is sup
ported by a goodness-of-fit test that revealed that the ob
served data differed significantly from the predictions
made by Model 2 [X2(43) = 88.61,p < .001]. The source
of the poor fit is clearly shown in the leverage plot for the
feature information source (Figure 6). As can be seen, the
model fails to account for the relative lack ofan effect of
cue duration at long ISis and underestimates the effect of
cue duration at O-msec lSI.
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Figure 3. Leverage plot for the identity source of information as
a function of interstimulus interval, cue duration, and the visual
angle between the target and the nearest letter. Data points indi
cate the observed values, less the predicted accuracy owing to fea
ture information. Solid lines represent the values predicted by
Modell, less the predicted accuracy owing to feature information.

.20

of that transformation), the choice of transformation is,
in effect, a choice of different theoretical approach; we
have argued that the framework adopted here is the most
defensible one on the basis of the extant literature on par
tial report.

The model also provides an accurate account ofthe rate
of transposition errors. Figure 5 shows the overall accu
racy ofthe fit. The root-mean squared deviation from the
model predictions was .036. As with the accuracy data, a
goodness-of-fit test revealed that the observed transpo
sition data did not differ significantly from the predicted
transpositions [X 2(47) = 42.98,p > .47]. The accurate fit
is almost entirely due to the parameters estimated for ac
curacy, as shown in Equation 11; only the overall rate of
transposition errors was estimated from these data. Thus,
the substantial correlation apparent between the pre
dicted and observed values (R2 = .840) was predicted
with no free parameters.

Model 2: Effects on
Abstract Identity Information

Within the tripartite framework, it is also possible to
evaluate alternative hypotheses concerning the effect of
cue duration. In particular, we fit the model to the data on
the assumption that cue duration decreases the accuracy
oflocation information associated with abstract identity
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and
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lates cue duration with other factors that affect visual fea
ture information. This hypothesis was supported by the
fit ofa quantitative model in which three different sources
of information used in the partial report task are disen
tangled. This model allows performance to be predicted,
using five parameters. The resulting fit provided an ac
curate description of the observed data, accounting for
over 93% of the variance in observed scores.

The model provides an accurate account ofa variety of
trends in the results. First, it correctly predicts that effects
of cue duration interact with lSI and that there is essen
tially no effect of cue duration with an lSI of 810 msec .
Second, the model predicts the form of the interaction
between cue duration and interitem spacing: Greater cue
duration effects are observed with larger spacing, and the
increase is multiplicative, as predicted by the model. Both
of these results are clear from Figure 4. Third, the model
correctly predicts that the difference between letters and
fillers does not interact with the cue-duration effect. In
other words, although interletter distance has an effect in
dependent of interitem distance, this effect is the same at
both levels ofcue duration, as is shown in Figure 3. Fourth,
the model also can accurately predict transposition er
rors. Taken together, these effects suggest that extended
cue duration interferes with information that is short lived
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Model 3: Effects on Verbal Information
Although it has not been discussed in the literature, it

is logically possible that the effect of cue duration is spe
cific to the use of verbal information. Perhaps long
duration cues interfere with a maintenance mechanism,
such as rehearsal. This generates the prediction that the V'
parameter in Equations 9 and 10 should be smaller with
long-duration cues. The new versions of the equations
for this model would be

P(C) = P' V' + I'd

P(C) = P' V' + I' d + F' CD + N' CD s.

The results of fitting this model to the obtained data
are similar to those obtained for Model 2, with a root
mean squared deviation of .050 and an R2value of .802.
The results of a goodness-of-fit test were also similar to
those for Model 2: The observed data differed significantly
from the predictions made by Model 3 [X2(43) = 92.49,
P < .001].

Figure 7 shows the leverage plot for the feature infor
mation source and illustrates the nature of the problem in
this model. As in Model 2, the effect of cue duration is
underpredicted at an lSI of 0 msec and overpredicted at
810 msec. In contrast, Model I provides an accurate ac
count ofthis pattern, because it is based on the assumption
that cue duration affects feature information and feature
information is largely unavailable at long ISIs.

Figure 5. Predicted versus observed transpositions for Modell.
Data points in the 81()..msecinterstimulus interval conditions are
offset .2 for clarity.

GENERAL DISCUSSION

The aim of the present research was to isolate the locus
of the effect ofcue duration. It was argued that the effect
of cue duration could be explained by a model that iso-

Figure 6. Leverage plot for the feature source of information
as a function of interstimulus interval, cue duration, and the vi
sual angle between the target and the nearest letter. Data points
indicate the observed values, less the predicted accuracy owing
to identity information. Solid lines represent the values pre
dicted by Model 2, less the predicted accuracy owing to identity
information.
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Figure 7. Leverage plot for the feature source of information
as a function ofinterstimulus interval, cue duration, and the vi
sual angle between the target and the nearest letter. Data points
indicate the observed values, less the predicted accuracy owing
to identity information. Solid lines represent the values pre
dicted by Model 3, less the predicted accuracy owing to identity
information.

items and fillers, Model 2 might have provided the more
accurate account. Thus, the comparison of fits from sev
eral models of comparable complexity provides insight
into precisely which aspects ofthe modeling enterprise are
required for accurate predictions.

Even though the results of the model fits support the
notion that cue duration interferes with visual feature in
formation only, Models 2 and 3 do not comprise an ex
haustive list of the alternatives to Model I. Other possi
bilities could include models that incorporate effects of
cue duration into multiple sources of information. How
ever, such models would require more complex theoret
ical analyses and quantitative implementation, without
being able to account for much more of the variance in
observed scores. Although data from other experiments
might require such more complex formulations, the pres
ent analysis (that the interference caused by cue duration
is localized solely to visual feature information) is ade
quate to account for the present pattern of results.

Although it has been shown that visual feature informa
tion is reduced by long cue duration, the evidence provided
here does not provide much constraint on how the infor
mation is reduced. However, the current work is consistent
with a mechanism recently proposed by Dixon et al.
(1997). Their model is based on two assumptions: Selec
tion of information from the array is tied to the spatiotem
poral characteristics of the cue, and information from the
array becomes unreliable as it decays. Dixon et al. suggest
that visual cues indicate not only a region ofthe visual field
from which information is be selected, but also a period of
time over which information is to be selected. Thus, when
a long-duration cue is presented, selection from the infor
mation about the array occurs over a longer period oftime.
However, because array information becomes less reliable
over time, selecting information about the array for a
longer period of time leads to less accurate information
about the target item, and performance suffers. Dixon et al.
suggested that the decrease in accuracy was due to the loss
oflocation information about array items, but the evidence
they present is equally consistent with the evidence pre
sented here that the cue-duration effect is related to the loss
of visual feature information.

On the basis ofthese converging lines ofevidence, then,
we suggest the following description of the effect of cue
duration. After a brief display, subjects have available at
least three kinds of information: visual features, abstract
identities, and verbal codes. Verbal information and ab
stract identity information decay relatively slowly and so
can be used strategically by the subject to choose the best
response. However, in order to make use of feature infor
mation, attention must be directed quickly to the target
position of the target. We hypothesize that the relatively
poor performance with long-duration cues occurs because
subjects are led to attend to the decaying visual feature
information long after it is useful to do so. Consequently,
the visual feature information that is extracted from the
array becomes unreliable ifa long-duration cue is used to
direct attention, and performance suffers. The present re-
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(because the cue duration has little effect at long ISIs) and
that is specific to visual form rather than to abstract iden
tity (because there is little interaction between items and
fillers).

Model 1 captures these trends in a quantitative form,
and the accurate fit of the model provides evidence for
these effects. A model that does not incorporate these
trends would not fit as well, and a model that predicted
other trends that are not present in the data would fit no
better, while having more parameters. Models 2 and 3
show two alternatives within the tripartite framework that
fail to capture the trends in the data in a suitable fashion.
The result is demonstrably less accurate fits, as is shown
in Figures 6 and 7. The leverage plots for Modell illus
trate that all ofthe parameters are essential and that there
appears to be little systematic deviation that could be cap
tured by including additional parameters. Thus, within
the constraints ofthe tripartite framework and related for
mulations, Model 1 would seem to provide the most ac
curate and parsimonious account of the cue-duration ef
fect in the present experiment. Ofcourse, different patterns
of obtained results could easily have supported Model 2
or 3 rather than Modell. For example, ifthe effect of cue
duration had been stronger at the long-duration ISIs, or
ifthe effect had been modulated by the difference between



suits indicate that this effect is not observed at long ISIs,
because performance is based primarily on verbal and
abstract identity codes rather than on visual feature in
formation.
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