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Abstract— We investigate the potential of using EEG record-
ings of observers performing a rapid visual categorization
task for person identification. We examine a 0.5 s epoch of
EEG data using machine learning techniques that, unlike most
previous studies, analyze the data in a holistic manner and
extracts discriminative spatio-temporal filters. The analysis of
the filters suggest sparse feature representation spatially as
well as temporally. The filters reveal that the neural activity
that discriminates individuals is spatially localized to occipital
electrodes located on the scalp above the visual cortex and tem-
porally localized in the interval of 120-200 ms after presentation
of the visual stimulus. The results demonstrate the feasibility of
EEG-based person identification based on difficult perceptual
tasks.

I. INTRODUCTION

A brain-computer interface (BCI) is a communication

link between the brain and an external device, applied

primarily in assisting disabled individuals by using neural

activity to control prosthetic devices (robots, artificial limb,

autonomous vehicles etc.) [18], [13]. BCIs can be classified

into two categories: invasive and non-invasive, depending

on the type of neural signals and recording technology.

While the primary application of BCI lies in the field of

neural rehabilitation for disabled individuals, BCI’s play an

important role as an analytical tool for studying brain mech-

anisms and testing new hypotheses about brain function.

Recent BCI developments have given rise to a new research

paradigm: brain activity-based biometry [9], [11]. These

biometric systems can potentially become an emerging area

of research, using neural signals as an alternate biometric

modality or in conjunction with conventional modalities like

fingerprints, face images, iris scans [8], [21], [3] to form a

robust multimodal biometric system. In this paper we use

neural signals recorded from human observers, performing

a rapid visual categorization task for person identification

and systematically study discriminative patterns arising from

variations in individual’s response to visual stimuli.

Use of neural signals for person identification has some

unique advantages compared to the conventional modalities:

1) Uniqueness: With current technology it is extremely diffi-

cult to duplicate neural emissions. Patterns of neural activity

are thought to be unique to each individual [10] (Figure

1).Figure 1 shows EEG activity recorded from 64 electrodes

at a 170 ms post stimulus onset for 2 observers performing

exactly the same visual categorization task (categorizing an
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image as that of a car or a face). The significant differ-

ence in the amplitudes (measured in μV ) between the two

patterns of EEG activity produced by the observers’ brains

in response to the visual stimuli forms the rationale behind

using EEG signals in person identification. 2) Circumvention:

It is difficult to reproduce under duress. Brain activity is

sensitive to stress level and mood of the person [9]. We

propose to use EEG recordings for person identification due

to its non-invasive nature and superior temporal resolution.

Moreover, when these unique characteristics are considered

in combination with the advent of affordable, wireless,

mobile EEG devices, EEG becomes a natural choice for an

efficient biometric recording technique.
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Fig. 1. Individual Differences: EEG activity at 170 ms after stimulus onset
(N170) for 2 observers presented with same stimulus (face image).

Most of the early EEG-based biometrics research [12],

[15] typically use autoregressive (AR) approaches for mod-

elling the EEG signals, followed by Vector Quantization [15]

or discriminant analysis [12] for classification. Recently,

Palaniappan [11] developed a technique for EEG-based per-

son identification which involves extracting features based

on spectral powers for band-passed signals and fuzzy Neural

Network and kNN classifiers for decision making. Marcel et

al. [9] proposed a Gaussian Mixture Model-based framework

using EEG signals for person authentication applications.

The EEG signals are typically quite noisy and high dimen-

sional. For example, one sample of our EEG data has 22912

(64 spatial channels (electrodes) ×358 temporal points)

dimension. Consequently, the data analysis is hindered by

the curse of dimensionality [4], requiring feature extraction.

To extract features from EEG signals, most conventional

approaches typically assuming space-time separability. The

EEG data is first processed spatially, by applying Laplacian

filter [20], followed by temporal processing. Temporal pro-

cessing often relies on spectral decomposition of brain data

and the utilization of power in various frequency bands (e.g.

μ-band or β -band or γ-band [20], [11]). While physically

intuitive under specific task conditions, the use of spectral

feature for EEG-based person identification seems largely

heuristic, and likely to produce suboptimal results. Pala-
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niappan et al. in [11] used the γ-band features for person

identification successfully, however features extracted from

γ-band using the current data failed to produce above chance

performance. One probable reason for poor performance

using γ-band feature extraction might be the nature of the

task and the duration of the EEG signals used for analysis.

Furthermore, some users are unable to control these EEG

rhythms [19], and hence the a priori selection of these

spectral bands as features may not be appropriate in general.

The current study differs from previous studies in several

ways. First, we use EEG signals involved in a difficult (to

make the task difficult, we add filtered noise to the vi-

sual stimuli) visual perceptual task in which amplitude

differences between the different stimuli occur within the

first few hundred milliseconds after presentation In con-

trast, most existing work recorded the EEG signals when

the observers were performing relatively easy, higher-level,

memory-related tasks [11], [9], which required longer dura-

tion of EEG recording (∼1s).

Second, since EEG consists of spatio-temporal signals, we

model them holistically utilizing joint statistical properties

of features, bypassing the space-time separability assump-

tion and avoiding the pitfalls of heuristic approaches, such

as temporal binning. However, most approaches [12], [15]

implicitly assume space-time independence and typically

process the EEG data separately in space and time domains.

Unlike spectral features, which are usually extracted using

fixed (Fourier) basis, the feature basis estimated by our

technique is driven by the data, and hence is highly adaptive.

Our main contributions include the following:

• We demonstrate the efficacy of EEG as a biometric

modality using activity evoked in a difficult perceptual

task to identify individuals.

• We present an analytical tool to study the spatial and

temporal dynamics of neural activity that systemati-

cally discriminates between individual’s neural response

while performing the visual task.

• We explore the relationship between the visual stimuli

and the discriminability of EEG signals.
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Fig. 2. Illustration of psychophysical experiment

II. MATERIALS AND METHOD

A. Visual Task

An image of a face or a car was presented as a stimulus

to the observers who performed the behavioral task. The

stimulus set consisted of 290× 290 pixel 8-bit gray scale

images of faces and cars taken from the Max Planck Institute

for Biological Cybernetics face database. Twelve images of

each class, face and car, (six frontal view, six 45◦ rotated)

were used as stimuli. Gaussian white noise was then added

to these 24 base images to build a stimuli set of 1000

images (500 face, 500 car). Noise was generated by filtering

independent 3.53cd/m2 standard deviation white Gaussian

noise fields by the average power spectrum of the car/face

stimuli and then added to the original stimuli.

Twenty naive observers (ages: 18−26) participated in the

study. The study consisted of 1000 trials split into 5 blocks

of 200 trials. On each trial, observers fixated at a central

cross and pressed a mouse button to initiate the trial. After

a variable delay of 0.5-1.5s, the stimulus appeared for 40

ms The stimulus was followed by a blank screen presented

for 0.5−1.5 seconds after which the response window was

presented,at which point the observer was to identify the

category (face/car) of the stimulus. Figure 2illustrates the

setup of the psychophysical study.

B. Data Collection

EEG activity was recorded, using 64 Ag/AgCl sintered

electrodes mounted in an elastic cap and placed according

to the International 10/20 System. The data were sampled at

512 Hz, re-referenced offline to the signal recorded from the

central midline electrode (Cz), and then band-pass filtered

(0.01 − 100 Hz). Trials containing ocular artifacts (blinks

and eye movements) detected by EOG amplitudes exceeding

±100 mV or by visual inspection were excluded from

the analysis. The EEG waveforms in all conditions were

computed time-locked to stimulus onset and included a 200

ms pre-stimulus baseline and 500 ms post-stimulus interval.

C. Pattern Analysis

We have applied two widely used machine learning tech-

niques, Support Vector Machine (SVM) and Linear Discrim-

inant Analysis (LDA), for discriminating individuals based

on their brain activity.

1) Support Vector Machines (SVM): The goal of Support

Vector Machines (SVM) [17] is to maximize the margin

between two classes. This is achieved by picking the hyper-

plane so that the distance from the hyperplane to the nearest

data point is maximized. We use linear SVM for the purpose

of simplicity. SVM is originally designed for 2 class problem

and then extended to handle multiple class problem using one

vs. rest approach. A few remarks are in order. First, SVM has

no distribution assumption. This suggests that SVM might

perform well under non-Gaussian distribution. Second, the

weight vector of SVM is meaningful only for 2 classes. To

find a meaningful weight vector for multiple classes, we turn

to LDA.

2) Linear Discriminant Analysis (LDA): The objective of

LDA is reduce data dimensionality while maintaining class

separability, normally by maximizing an objective function.

The most popular form of LDA relies on the maximization
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Fig. 3. Fisherbrain: Snapshots of the first Fisherbrain at 6 time points (70.3, 109.4, 121.1, 130.9, 250, 484.4 ms) after stimulus onset. The red and blue
regions mark informative electrode locations with the most discriminative information (denoted by highly positive(red) or negative(blue) filter weights).

of the Fisher criterion [5]:

J(T) = arg max
T∈Rm×p

|TSbT�|
|TSwT�| , (1)

where Sb and Sw represent between-class and within-class

scatter matrix [4]. T is a set of eigenvectors associated

eigenvalues based on the generalized eigen-decomposition.

In Section III-A, we will use the eigenvectors with top

eigenvalues to examine EEG signals spatially and temporally.

The classification is performed by projecting EEG data onto

T, followed by a 1 nearest neighbor rule.

III. EXPERIMENTAL RESULTS

A. Fisherbrains

Using the coefficients of the LDA feature extraction ma-

trix, we analyzed the spatio-temporal patterns responsible for

encoding discriminative information used for person identifi-

cation. Lets recall the projection matrix T of LDA in Eq.(1)

Each column of T is the so-called spatio-temporal filter

in the BCI community. However, unlike abstract features

arising in LDA, these filters have a clear interpretation. If

a column/filter is reorganized into a spatio-temporal array,

it denotes informative electrodes, time scales, and latencies

involved in encoding the differences among various indi-

viduals. We term these filters as Fisherbrains, a concept

very similar to the Fisherfaces [1] used widely in face

recognition community. The key difference between them is

that Fisherbrains contain temporal information for discrimi-

nation in addition to spatial information. Fisherbrains act as

an analytical tool to study the brain dynamics responsible

for discriminating between individuals. Figure 3 shows a

snapshot of the first Fisherbrain by illustrating informative

electrode locations through various time points.

1) In the temporal domain, there is hardly any discrim-

inative information in the first 100 ms, which can be

attributed to the latency of visual information process-

ing. The Fisherbrain shows the period 120-200 ms to

be the most informative (red and blue regions denotes

highly informative locations) which is consistent with

the neuroscience research (Cortical potential studies

have demonstrated that about 170 ms after presentation

of visual stimulus such as face/object, humans show

a negative deflection in voltage (N170 [2]) during

EEG recordings). The discriminative ability continues

to decrease monotonically 250 ms onwards.

2) In the spatial domain, investigating the informative

electrode locations, it appears that electrode locations

associated with the visual cortex appear to play a

prominent role in identifying individuals. This is con-

gruous with our experimental setup, where we use only

the low level visual response of our observers in order

to identify them.

B. Performance Evaluation

A priori, we expected activity in visual cortex to be the

primary contributor to this task [14], and electrodes over

visual cortex should be the most informative. Our intuition

is validated by the Fisherbrain which also demonstrated the

electrodes in the visual cortex to be the most discriminative.

Accordingly, we used a subset of 20 (out of 64) electrodes

placed over occipital brain regions (i.e., over visual cortex)

for reporting classification rates for person identification.

The data were divided into training and testing sets as

explained below. We used k-fold (k = 2,4,5,10) stratified

cross validation scheme [7] for performance evaluation. To

reduce the variance of estimated classification rates, the

overall k-fold cross validation (CV) procedure was repeated

10 times, and overall performance is reported by the mean

classification rate along with the standard deviation.

We designed two datasets:pre-stimulus and post-stimulus
to examine the discriminatory dependency of the EEG sig-

nals, based on the onset of the stimulus (face/car). The pre-

stimulus dataset consists of the first 200 ms of EEG recording

before the face/car appears and the post-stimulus dataset
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Fig. 4. Classification accuracy with pre-stimulus and post-stimulus data
with 2-fold CV. Note that pre-stimulus classification is close to chance (5%)

consists of EEG recordings for 500 ms after the stimulus is

displayed. Intuitively, we expected the post-stimulus data to

be more informative.However, several studies have demon-

strated modulations of pre-stimulus EEG signals in visual

attention tasks [6], [16]. Thus we wanted to explore the

possibility of the pre-stimulus data playing a role in person

identification.

As shown in Fig.4 and Table I, the pre-stimulus data

contained negligible discriminant information compared to

the post-stimulus data. LDA and SVM give 6.08% and

7.13% in classification accuracy respectively for pre-stimulus

data, which is comparable to chance performance (5% = 1
20 ).

However, for the post-stimulus data LDA and SVM achieve

much better accuracy (∼ 75%-LDA, ∼ 91%-SVM), using

2-fold CV. Increasing the size of the training set (from 2

to 10 fold), both LDA and SVM improve in accuracy. For

instance, SVM achieves more than 94% in accuracy by using

10-fold cross validation. Finally, SVM outperformed LDA

significantly (by 6 − 16% margin) with the post-stimulus

data, consistently giving better performance. One possible

reason for superior SVM performance might be the highly

non-Gaussian distribution of the EEG data. LDA is optimal

under Gaussian distribution with equal covariance, whereas

SVM has no such requirements.

TABLE I

PRE VS. POST STIMULUS

k-fold CV LDA SVM
Post-stimulus

2 75.52 (±0.24) 91.56 (±0.18)
4 85.36 (±0.12) 93.35 (±0.11)
5 86.30 (±0.23) 93.59 (±0.10)

10 87.78 (±0.16) †94.08 (±0.08)
Pre-stimulus

2 6.08 (± 0.11) 7.13 (± 0.23)

IV. CONCLUSION

We explored the efficacy of using brain activity (measured

by EEG) as a biometric modality, using visually evoked

neural activity for discriminating between individuals while

they performed a difficult visual perception task. We adopt

a holistic approach to data analysis, wherein discriminatory

information, distributed non-uniformly over time and space,

is extracted jointly by low-dimensional features. Based on

our results, we conclude that in this task post-stimulus

EEG activity, and not pre-stimulus activity, contains relevant

discriminatory information for person identification. Further-

more, the resulting Fisherbrains provide useful information

about the spatio-temporal dynamics of the human brain.
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