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Within the past decade computational approaches adopted from the field of machine learning have provided
neuroscientists with powerful new tools for analyzing neural data. For instance, previous studies have
applied pattern classification algorithms to electroencephalography data to predict the category of presented
visual stimuli, human observer decision choices and task difficulty. Here, we quantitatively compare the
ability of pattern classifiers and three ERP metrics (peak amplitude, mean amplitude, and onset latency of the
face-selective N170) to predict variations across individuals' behavioral performance in a difficult perceptual
task identifying images of faces and cars embedded in noise. We investigate three different pattern classifiers
(Classwise Principal Component Analysis, CPCA; Linear Discriminant Analysis, LDA; and Support Vector
Machine, SVM), five training methods differing in the selection of training data sets and three analyses
procedures for the ERP measures. We show that all three pattern classifier algorithms surpass traditional ERP
measurements in their ability to predict individual differences in performance. Although the differences
across pattern classifiers were not large, the CPCA method with training data sets restricted to EEG activity
for trials in which observers expressed high confidence about their decisions performed the highest at
predicting perceptual performance of observers. We also show that the neural activity predicting the
performance across individuals was distributed through time starting at 120 ms, and unlike the face-
selective ERP response, sustained for more than 400 ms after stimulus presentation, indicating that both
early and late components contain information correlated with observers' behavioral performance. Together,
our results further demonstrate the potential of pattern classifiers compared to more traditional ERP
techniques as an analysis tool for modeling spatiotemporal dynamics of the human brain and relating neural
activity to behavior.
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Introduction

A fundamental goal of cognitive neuroscience is to understand
how the human brain processes and represents the environment and
how these representations are used to guide adaptive behavior.
Traditionally, the link between brain activity and information
processing has been investigated by revealing correlations between
measures of neural activity and measures of behavioral performance.
The utility of electroencephalography (EEG) in making this link was
recognized by Woodworth (1938) soon after Hans Berger (1929)
reported the first published observations of the human electroen-
cephalogram. EEG is particularly well suited to investigating brain–
behavior relationships because of its temporal resolution, but also
because the EEG signal can be characterized by various features (e.g.,
latency, amplitude, power, phase), each of which can be used to relate
neuronal responses with behavioral measures of information proces-
sing efficiency (response time, accuracy, sensitivity). For instance, the
earliest published reports related EEG amplitudes and latencies with
overt conditioned responses (Walter et al., 1964), trial-by-trial
variations in response time (RT) (Kutas et al., 1977), and individual
differences in intelligence (Ertl and Schafer, 1969). More recently,
correlations have been established between ERP component ampli-
tudes and changes in perceptual sensitivity during spatial attention
tasks (Mangun and Hillyard, 1988,1990) and individual differences in
working memory capacity (Vogel and Machizawa, 2004; Vogel et al.,
2005). Complementing the analyses of latency and amplitude, power
modulations in specific frequency bands have also been linked with
behavioral performance (Ergenoglu et al., 2004; Hanslmayr et al.,
2007; Klimesch et al., 1993).

While the traditional approach of using EEG to investigate the
relationship between neural activity and information processing
measured by behavioral performance on specific cognitive tasks has
provided key insights into brain–behavior relationships, this approach
does not take full advantage of the multivariate nature of the EEG data:
particularly the fact that task-related neural activity is distributed across



Fig. 1. Illustration of psychophysical procedure for study.
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time. Multivariate pattern classifiers provide a method of integrating
neural activity into a decision variable that can be used to make
categorical decisions on a trial-by-trial basis for which performance
metrics (i.e., accuracy of decisions) directly comparable to behavioral
performance (i.e. single-trial EEG; Gerson et al., 2005; Philiastides et al.,
2006; Philiastides and Sajda, 2006) can be computed. The technique
has been applied both to EEG (Philiastides et al., 2006; Philiastides and
Sajda, 2006) and functionalmagnetic resonance imaging, fMRI, (Haynes
and Rees, 2005; Kamitani and Tong, 2005; Norman et al., 2006). For the
case of EEG, studies have used pattern classifiers to successfully predict
the visual stimulus presented to the observer, observer choices and task
difficulty (Philiastides et al., 2006; Philiastides and Sajda, 2006).

The aim of the present study is to quantitatively compare pattern
classifiers and more traditional ERP metrics in their ability to predict
the variability in perceptual performance across different individuals
from EEG activity. First, we compared the recently proposed single-
trial EEG analysis using pattern classifiers to metrics related to more
traditional methods based on EEG-trial averaging (Event Related
Potentials, ERP). In particular, we compare the pattern classifiers to
traditional ERP metrics (peak amplitude, mean amplitude and peak
latency) in the ability to predict behavioral performance in an object
identification task (face vs. car) across twenty human participants.
The face/car paradigm evokes well-known EEG components includ-
ing N1, N170 (Gauthier et al., 2003; Taylor et al., 1999) and in the past
have been used to explore links between brain and behavior using
pattern classifiers (Philiastides et al., 2006; Philiastides and Sajda,
2006). Second, we compared the predictive ability of different
classifier algorithms (LDA, SVM and CPCA) and various training
methods including using neural data restricted to correct decision
trials and high decision confidence trials. Finally, but most impor-
tantly, we investigated the temporal distribution of classification
performance to elucidate the time-epochs coding neural activity that
is predictive of observers' perceptual performance.

Materials and method

Experimental setup

Screen displays of face and car were presented as stimuli to the
observers who performed the behavioral task of identifying the
correct label of the image (face/car) and their neural signals were
recorded via electroencephalography. The details of the experiment
are given in the following section.

Stimulation and display
The stimuli set consists of 290×290 pixel 8-bit gray scale images

of faces and cars taken from the Max Planck Institute for Biological
Cybernetics face database (Troje and Bülthoff, 1996). Images were
displayed on an 19-inch ViewSonic Color E90F monitor (resolution
1024×768) with a refresh rate of 75 Hz in a darkened room. All images
were filtered to achieve a common frequency power spectrum (the
average of all images). Twelve images of each class, face and car, (six
frontal view, six 45° rotated) were used as stimuli. Gaussian noise was
then added to these 24 base images to build a stimuli set of 1000 images
(500 face, 500 car). Noisewas generated by filtering independentwhite
Gaussian noise fields (standard deviation of 3.53 cd/m2) by the average
power spectrum of the car/face stimuli. The noise fields were added to
the original car/face images. Observers were placed at a distance of
125 cm from a display set at a mean luminance of 25 cd/m2 with a
maximum luminance of 50 cd/m2 and images subtended 4.57° of visual
angle. Contrast energy (CE) of all face and car stimuli were matched to
be 0.3367°2, where CE is defined as the sum of the squared contrast
values of the stimuli multiplied by the spatial extent of a pixel:
CE = ∑∑ s2 x;yð Þ

L2o
ΔxΔy, where s=luminance value of signal at pixel(x,

y) and Lo is the mean luminance.
Observers and procedure
Twenty naive observers (ages: 18–26) participated in the study.

Observers were initially presented with 1000 stimuli-familiarization
trials on the first day and 100 more practice trials immediately
preceding the current experiment on the second day. No EEG activity
wasmeasuredduring thepractice sessions. The actual study consistedof
1000 trials split into 5 successive sessions, each having 200 trials. After
each session observers had a break. The observers fixated on a central
cross and pressed a mouse button to indicate the beginning of the trial.
The stimulus appeared for 40 ms after a variable delay of 0.5−1.5 s. The
stimulus was followed by a blank screen presented for 0.5−1.5 s after
which the response window was presented (Fig. 1). Observers were
asked to rate how confident they were that they saw either a face or a
car, with a rating of 1 indicating complete confidence that a face was
presented and a rating of 10 indicating complete confidence that a car
was presented. Confidence responseswere recorded bymouse clicks on
the rating buttons of the responsewindow. Participantswere instructed
only to move the mouse when the response window appeared and
premature mouse clicks were given feedback and recorded.

Electroencephalogram data acquisition and pre-processing
Each subject's electroencephalogram was recorded from 64 Ag/

AgCl sintered electrodes mounted in an elastic cap and placed
according to the International 10/20 System. The horizontal and
vertical electro-oculograms (EOG) were recorded from electrodes
placed 1 cm lateral to the external canthi (left and right) and above
and below each eye, respectively. The data were sampled at 512 Hz,
re-referenced offline to the signal recorded from the central midline
electrode (Cz), and then band-pass filtered (0.01−100 Hz). Trials
containing ocular artifacts (blinks and eye movements) detected by
EOG amplitudes exceeding ±100 mV or by visual inspection were
excluded from the analysis. The average ERP waveforms in all
conditions were computed time-locked to stimulus onset and
included a 200 ms pre-stimulus baseline and 500 ms post-stimulus
interval.

Analysis

The analysis of the EEG data used both classical ERP measures and
pattern classifiers.

ERP metrics
ERP activity was quantified using three measures, peak N170

amplitude, mean N170 amplitude and peak latency for N170 for face
and car trials and difference wave. Fig. 2 (top row) shows the mean
face trial and mean car trial averaged over all 20 observers for
electrode PO8. The peak amplitude and latency was measured using
an automatic peak detection routine within a window of 140−210 ms
after onset of the stimulus on the ERP. For each subject and condition,
mean N170 was calculated using a ±40 ms window centered on the
peak N170 latency. The difference wave was constructed by



Fig. 2. ERP response: ERP for face and car trials for PO8 electrode averaged across all observers (top row). Time interval (140–210 ms) used for N170 analysis: difference wave for PO8
for 20 observers shown in blue which includes all the peaks (middle row). The mean difference wave for 20 observers is shown in red (bottom row).
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subtracting the mean face trial from the mean car trial. Fig. 2
illustrates using difference wave, the time window taken for each
observer for PO8 for peak detection and verifies that all peaks are
included during N170 analysis.

Pattern classifier-based metrics
Recently, multivariate pattern classifiers has been successfully

used in research related to functional magnetic resonance (Haynes
and Rees, 2005; Kamitani and Tong, 2005; Norman et al., 2006) and/
or EEG (Parra et al., 2005; Philiastides et al., 2006; Philiastides and
Sajda, 2006). In this study, we investigated the efficacy of three types
of pattern classifiers in predicting the variability of perceptual
performance across individuals. Single-trial EEG classification is a
challenging task since the data is typically of high dimensionality and
suffers from the small sample size problem, which arises when the
dimensionality of the data exceeds the size of the training database
due to limitations in the training time. Under the small sample size
conditions, a large portion of the data space is sparse and carries very
little or no useful information. The irrelevant subspace is discarded
through extraction of a small set of useful features in order to obtain
meaningful data statistics. Here we have used classical discriminant
analysis tools like Linear Discriminant Analysis, non-parametric
pattern classifiers (Support VectorMachines) and a recently proposed
non-linear classification technique (Classwise Principal Component
Analysis) to analyze the EEG signals.

Definition of variables. Let Χ∈ℝNe × t be a 500 ms long segment of EEG
signal, where Ne is the number of electrodes (Ne=63, electrode Cz
being the reference electrode is not considered) and t is the number of
time points sampled at 512 Hz (t=0.500×512=256). Let x∈ℝn be a
vectorized version of X, where n=Ne× t. The vectorization scheme
can be chosen arbitrarily, but must be applied consistently. Note that
the n coordinates of x contain both spatial and temporal information,
which can be recovered by applying the inverse of the vectorization
scheme. For temporal window analysis, Χ∈ℝNe ×20 is a 40 ms long EEG
signal, (t=0.040×512 and Ne=63). Let the number of trials be Nt

(=1000) and {x1,...,xNt
} be the input data fed to each of the three

pattern classifiers.

Linear Discriminant Analysis (LDA). LDA is perhaps the most widely
used feature extraction technique. The objective of LDA is to perform
dimensionality reductionwhile enhancing class separability, normally
by maximizing an objective function. The most popular form of LDA
relies on the maximization of the Fisher critereon (Fisher, 1936):

J Tð Þ = arg max
T∈ℝm× p

jΤSbΤTj
jTSwTTj ; ð1Þ

where Sb and Sw represent between-class and within-class scatter
matrices (Duda et al., 2001; Fukunaga, 1990). T is a set of eigenvector
associated eigenvalues based on the generalized eigen-decomposi-
tion. However, for large-scale data, the traditional LDA approach faces
a couple of challenges. Firstly, large-scale data is associated with large
covariance matrices which are difficult to store and manipulate.
Secondly, large-scale data inevitably leads to the small sample size
conditions (nNNt) and singular scatter matrix Sw, and so the classical
solution to Eq. (1) based on the eigenvalue/eigenvector decomposi-
tion of Sw−1Sb (Duda et al., 2001; Fukunaga, 1990), is not directly
applicable. We have used Principal Component Analysis (PCA) to
reduce dimension of the EEG signals thereby avoiding the small
sample size problem before applying LDA.

Support Vector Machines (SVM). In recent years, Support Vector
Machines (SVM) (Vapnik, 1998) have been extensively used in
machine learning and pattern recognition. The goal of SVM is to
maximize themargin between two classes. This is achieved by picking
the hyperplane so that the distance from the hyperplane to the
nearest data point is maximized. Given data {x1,...,xNt

} with their labels
{Li=1, −1}, the hyperplane takes the form w⊤x−b=0,where w is a
normal vector perpendicular to the hyperplane. Moreover, all the data
satisfy the following constraint:

w⊤xi−b ≥ +1 for Li = +1; ð2Þ

w⊤xi−b ≤ −1 for Li = −1; ð3Þ

This constraint can be written as:

Li w⊤xi−b
� �

≥1 ð4Þ

Now, let us consider the hyperplanes when the two equalities in
Eqs. (2) and (3) hold. These points lie on the hyperplaneH1:w⊤xi−b=1;
and the points lie on the hyperplane H2:w⊤xi−b=−1. By using some

geometry knowledge, the distance between H1 and H2 is
2

jjwjj. The
problem now is tomaximize

2
jjwjj, or equivalently, minimize jjwjj subject

to the constraint (Eq. 4). More precisely,

min jjwjj2
� �

s:t: Li wTxi−b
� �

≥ 1; i = 1; ⋯;Nt : ð5Þ

This is a standard optimization problem, and can be solved by
using the Lagrange method. For more details, please refer to (Vapnik,
1998). In this paper, we use linear SVM for the purpose of simplicity.
Note here that SVM has no distribution assumption. This suggests that
SVM might perform well under non-Gaussian distribution.

Classwise Principal Component Analysis (CPCA). Lastly, we used a
recently proposed (Das and Nenadic, 2009) computationally efficient,
locally adaptable, pattern classification technique for analyzing the
EEG data. The method is based on classwise PCA (CPCA) and results in
a simple piecewise linear dimensionality reduction technique. In this
technique, the strength of PCA as a dimensionality reduction
technique is exploited, while preserving the class-specific information
to facilitate subsequent classification. The main idea behind the
technique is to identify and discard a useless (non-informative)
subspace in data by applying PCA to each class. The classification is
then carried out in the residual space, where the small sample size
conditions and the curse of dimensionality are no longer concerns.
Fig. 11 (A) illustrates the major difference between the classical PCA
method and CPCA, applied to a binary class case. The algorithm is a
two step procedure. In the first step, CPCA extracts a piecewise linear
subspace from the training trials and can be referred to as feature
extraction step. In the second step, unknown test trial is classified in
one of the subspaces estimated during the feature extraction step. The
two steps of CPCA are explained in detail in the Appendix A section.

Training conditions for pattern classifier
Pattern classification performance was evaluated for 6 different

training conditions as shown in Table 2. In the first case in Table 2, the
pattern classifier was trained with EEG trials using actual labels of
stimulus identity (face/car), regardless of the observer's decision
(denoted as “Tr Stim (all trials)”). In the second case, the training
database used the observer's choice of whether they thought the
image was a face/car as the label rather than actual stimulus identity
(“Tr Choice (alltrials)”). The third training condition rejected all trials
where the observer's choice of face/car differed from the actual
stimuli (“Tr Stim/Choice(correct trials)”). In this case, the training
phase was based on only EEG response for correct trials, where the
choice of the observer matched that of the actual stimuli identity. The
last two training conditions considered ERPs where the observers
made their choices with higher confidence (rating of 1:3 for face, and



Table 1
Summary of different EEG measures used for finding neural correlates.

Measures Metric

ERP measures N170 peak amplitude
N170 mean amplitude
N170 peak latency
AUC using N170 peak amplitude
AUC using N170 mean amplitude
AUC using N170 peak latency

Pattern classifiers using all electrodes AUC
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8:10 for car). “Tr Stim (hi-conf trials)” in Table 2 assigns the actual
stimuli as the label while “Tr Choice (hi-conf trials)” in Table 2 marks
the choice of the observers as the label.

Evaluation using Area Under the ROC

Performance evaluation for individual observers of both behav-
ioral ratings and neural decision variables was evaluated using Area
under the Receiver Operating Curve (AUC). Performance as measured
by AUCwas calculated using a non-parametric method that quantifies
for each scalar value (behavioral rating or neural decision variable
using ERP measures/pattern classifiers) corresponding to the face
stimuli (across F face trials), the probability that it will exceed the
responses to all the variables corresponding to the car stimuli across
all C car trials in the test data set.

AUC =
1
FC

∑
F

f =1
∑
C

c=1
step λf−λc

� �
+

1
2
δ λf−λc

� �
ð6Þ

where λf is the scalar value corresponding to the fth face stimuli, λc is
the scalar value to the cth car, F and C are the total number of face and
car trials and step is the heavyside step function defined as:

step xð Þ = 1; if x N 0
0; if x b 0

�

The function δ is the impulse function defined as

δ xð Þ = 1; if x = 0
0; if x ≠ 0

�

The first term (step function) inside the summation measures the
frequency in which a given response to a face stimuli exceeds the
response to the car stimuli. The second term with the impulse
function handles the instances in which the values for the face and car
stimuli are a tie (i.e., the frequency of correct decisions is 1

2
the

frequency of the ties). Use of a parametric binormal model to calculate
the Area under ROC Curve resulted in similar results to the non-
parametric method.

Evaluation of ERP metric using Area Under the ROC
Area under the curve using ERPmeasureswas calculated using two

separate analyses. In the first analysis, mean ERP waveforms were
computed for each of the 10 sessions (100 trials/session) separately
for car and face trials. Peak amplitude, mean amplitude and latency
were extracted for each mean ERP waveform. The resulting 10 scalar
values for each ERP measure (e.g. peak amplitudes) for car trials and
10 scalar values for face trials were then used to compute AUC to
evaluate the ability to discriminate car from faces. The calculated AUC
was then correlated with subject behavioral performance (AUC).

In the second AUC analysis, the peak amplitude, mean amplitude
and peak latencywas extracted for each individual trial, and these EEG
measures for car and face trials were then used to calculate the AUC.
The AUC was subsequently correlated with AUC calculated from
behavioral data for the 20 observers.

The first analysis extracts the ERP measures after averaging a
subset of trials (within one session) while the second analysis extracts
the EEG measures from individual trials.

Evaluation of pattern classifier metrics using Area Under the ROC

The analysis using different pattern classifiers was performed
using 10-fold stratified cross validation (Kohavi, 1995). The dataset
was randomly divided into 10 non overlapping folds of equal size,
each having 100 trials. One of the folds was designated as test data
while the remaining 9-folds constituted the training set. The pattern
classifier performance was evaluated by using the area under the
Receiver Operating Curve (ROC), AUC. To reduce the variance of
estimated area under the curve (AUC), the overall 10-fold CV proce-
dure was repeated 10 times, and the overall performance is given by
the mean AUC.

Figures of merit to evaluate neural metrics

The ability of various metrics to predict behavioral perceptual
performance was evaluated by using a Pearson linear correlation and
rank ordering of individuals' performance based on neural metrics.
The rank ordering measure is more similar to a Spearman Rank
Correlation which does not penalize departures from linearity and is
complementary to the Pearson correlation.

Pearson correlation
Once the ERP metrics and pattern classifiers were calculated, the

sample correlation between each ERP metric (Table 1) and behavioral
performance was calculated using Pearson's correlation (r), where

r =
cov x; yð Þ
σxσy

ð7Þ

cov is the covariance matrix and σ is the standard deviation between
the behavioral data and the ERP metric (x and y). The standard error
for each metric was calculated by performing a jack knife resampling
technique (Duda et al., 2001). The jack knifing approach is a compu-
tational technique based on removing samples from the available
dataset and recalculating the generic estimator. The ERP metrics
included peak N170 amplitude, mean N170 amplitude and peak
latency of the N170 for both face and car trials and the difference
wave. The mean AUC was used for the pattern classifiers using
different training conditions explained in the next section. Statistically
significant correlation coefficients using a 95% confidence interval are
emphasized in the results.

Neural metric-based rank ordering of individual's behavioral performance
We performed an additional 2 AFC simulation to further quantify

the neural correlation between the ERP measures and the behavioral
performance. In the simulation we chose any 2 random observers
without replacement out of 20. We found the corresponding ERP
measures (peak N170 amplitude and latency and mean N170 for P08
using the difference wave and AUC using pattern classifier) for each of
the 2 chosen observers. For each of the 4 measures, we found the
observer having the better ERP metric. We also found which of the
chosen observers had better behavioral performance. If the observer
having better ERP metric matched with the observer having better
behavioral performance, it was considered a correct classification. We
repeated this procedure for all possible combinations (190 simulation
trials) and reported the average correct classification rate for all 4
measures. The standard error for rank ordering was computed using
jack knife resampling technique.
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Results

Correlations between neural measures and behavioral performance

ERP peak, mean, and latency
Based on classic studies showing that the N170 is larger over right

lateral occipital electrodes than the corresponding left electrodes
(Bentin and Allison, 1996) and more recent pattern classification
studies (Philiastides et al., 2006; Philiastides and Sajda, 2006), we
computed the correlation between the various ERP metrics and
behavioral performance for a single electrode over right lateral
occipital cortex (PO8). Fig. 3 plots each observer's peak N170, mean
N170 and N170 latency ERP against the corresponding observer's
behavioral performance (Area under the ROC curve, AUC). The
measures were calculated using the ERP evoked on car trials
(black), face trials (blue), and the difference wave (red). The peak
N170 and themean N170 calculated from the differencewave showed
moderate positive correlations with behavior (r=0.546; r=0.52;
pb0.05). Otherwise, when the metrics were calculated from the face
and car trials separately, the correlations between ERP metrics and
behavioral performance are low (∼0.08−0.23, all pN0.05) and not
statistically different from r=0. In addition, the correlation between
the N170 latency and behavioral performance was low and not
statistically significant (pN0.05), irrespective of whether it was based
on EEG activity from car trials (r=0.086), face trials (r=0.099) or the
difference wave (r=0.16).
Fig. 3. Scatter plots showing correlation between behavioral performance (AUC) in face/ca
wave shown in red (top row), face trials in blue (center row) and car trials in black (bottom r
latency.
To provide a more complete characterization of the spatial
distribution of the correlation between each ERP metric and
behavioral performance, we computed the correlation at all electro-
des. The resulting topographical maps of the r-values are shown in
Fig. 4. Spatial locations with dark red colors denote higher positive
correlation values, dark blue colors denote higher negative correla-
tions and gray corresponds to statistically insignificant correlations
(pN0.05). Consistent with the analysis of the single electrode, the
strongest correlations are observed when the metrics were computed
based on the difference wave. Specifically, both peak and mean
amplitude measures resulted in significant positive correlations over
right lateral occipital, left temporal, and frontocentral electrodes. The
N170 latency was negatively correlated with behavioral performance
in frontal electrodes (both left and right). Relative to the correlation
with the difference wave, the correlations between performance and
the face and car trials shown are not robust and largely confined to
midline occipital electrodes.

We computed the AUC using each ERP metric to provide a
meaningful comparison between ERP metrics and pattern classifier
metric. However as seen from the correlation coefficient in the scatter
plots in Fig. 5, the correlation between behavioral performance (AUC)
and ERP performance was not statistically significant (rb0.44;
pN0.05) using all three ERP metrics. The low correlation is not
surprising as ERP metrics show large trial-to-trial variations and the
AUC computed from ERP measures do not provide robust neural
correlates for predicting behavior. Note here that neural correlates
r perceptual task and different ERP measures for P08 for 20 observers using difference
ow). ERP measure include peak N170 amplitude, mean N170 amplitude and peak N170



Fig. 4. Topographical map of correlation coefficients between ERPmeasures using all electrodes and behavioral performance (AUC) in face/car perceptual task for 20 observers using
difference wave (top row), face trials (center row) and car trials (bottom row). Different ERP measures include peak N170 amplitude, mean N170 amplitude and peak N170 latency.
Statistically insignificant correlation coefficients (r) using 95% confidence interval (0.44N rN−0.44) are shown in gray. All topographical maps are generated by EEGLAB (Delorme
and Makeig, 2004) using all electrodes.
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calculated using grand average of all trials are more stable and ERP
metrics (peak N170 andmean N170) using difference wave correlates
positively, albeit moderately, with the behavioral performance
(rN0.44).
Pattern classifier performance (Area under the ROC, AUC)
We used three pattern classifiers (LDA, SVM, CPCA) to predict the

perceptual performance of observers performing the visual task. The
pattern classifiers were evaluated using AUC and Table 2 shows the
correlation between pattern classifier performance (AUC) and
behavioral performance (AUC) for different training conditions. We
initially evaluated the pattern classifiers when it was trained using all
trials and using high-confidence trials only (ratings of 1:3 for face and
8:10 for car). The correlation between one of the pattern classifiers
(CPCA) and individual observer's performance for each training
condition is shown in Fig. 6 (Left = all trials; right = high-confidence
trials). Both modes of classifier training resulted in a statistically
significant positive correlation (r=0.67; p=0.001 and r=0.704;
p=0.0005) between classifier performance identifying car/face
stimulus and subjects' behavioral performance. Fig. 7 shows the
correlations between each of the EEG metrics investigated (pattern
classifier and N170 peak, mean and latency based on ERP difference
wave) and observers' behavioral performance. The correlation
coefficients for the pattern classifier based metrics are higher than
those from single electrode ERP metrics (pb0.05). In addition, the
standard error of the correlations obtained from the pattern classifiers
were lower than the correlations for the N170 peak and mean (e.g.,
stdterr=0.17 for the N170 peak correlation vs. stderr=0.07 for the
pattern classifier correlation) suggesting that pattern classifiers are
statistically more stable which is possibly related to their integration
of EEG activity across electrodes.
In addition to the two training conditions described above, the
classifiers were trained using three addition modes: a) training on all
trials but with the EEG activity for each trial assigned to the category
(car or face) based on the observers' choice rather than the actual
category of the image (Tr Choice, all trials); b) training on EEG activity
for those trials inwhich the observermade a correct decision (Tr Stim/
Choice, correct trials); c) training on EEG activity for trials inwhich the
observer expressed high confidence of their decision andwith the EEG
activity assigned to the category based on the observers' choice.

All three pattern classifiers resulted in statistically significant
correlations with behavioral performance and all surpassed (pb0.05;
Wilcoxon signed-ranks test) the ERP metrics. Across all training
conditions the CPCA method resulted in higher correlations with
behavioral performance (pb0.005; sign-rank test with Bonferroni
correction for ten tests) but the differences in correlations across
algorithms were modest (∼0.013−0.058).

Table 2 summarizes the correlations between performance of
different pattern classifiers and behavioral performance for five
different training conditions. This analysis revealed some differences
across the various training methods in the resulting correlation
between the pattern classifiers' performance and the observers'
behavioral performance (∼0.03−0.08). In particular, all three pattern
classifiers trained on neural data restricted to trials having high-
confidence ratings correlated best with the behavioral performance
and were shown to be statistically different from other training
methods using pairwise comparisons of Wilcoxon signed-ranks test
with Bonferroni corrections applied.

Correlation coefficients for all five training methods were statisti-
cally different from r=0 (pb0.05) for all the three pattern classifiers
used. The remaining analyses using pattern classifiers and comparison
with ERP metrics was performed using CPCA due to its superior perfor-
mance but all pattern classifiers produced similar results.



Fig. 5. Scatter plots showing correlation between behavioral performance (AUC) and AUC computed from ERP measures (peak N170 amplitude, mean N170 amplitude and peak
N170 latency) using P08 electrode: top row shows AUC calculated using mean ERP waveforms for 10 sessions (100 trials/session). Bottom row shows AUC calculated using ERP
measures for each individual trials.
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Accuracy at rank ordering subjects behavioral performance from neural
measures

To further evaluate the ability of the different EEG metrics to
predict the variation in perceptual performance across individuals we
Table 2
The correlation coefficient between behavioral data and EEG measures using pattern
classifiers under different training conditions for 20 observers.

Pattern classifiers using all
electrodes

Metric Training condition r

CPCA AUC Tr Stim (all trials) 0.6720(±0.07)
Tr Choice (all trials) 0.6766(±0.10)
Tr Stim/Choice (correct
trials)

0.6794(±0.09)

Tr Stim (hi-conf trials) 0.7049(±0.09)
Tr Choice (hi-conf
trials)

0.6552(±0.08)

SVM AUC Tr Stim (all trials) 0.6371(±0.10)
Tr Choice (all trials) 0.6245(±0.12)
Tr Stim/Choice (correct
trials)

0.6561(±0.13)

Tr Stim (hi-conf trials) 0.6873(±0.11)
Tr Choice (hi-conf
trials)

0.64(±0.11)

LDA AUC Tr Stim (all trials) 0.6339(±0.10)
Tr Choice (all trials) 0.6177(±0.12)
Tr Stim/Choice (correct
trials)

0.6660(±0.12)

Tr Stim (hi-conf trials) 0.69(±0.15)
Tr Choice (hi-conf
trials)

0.6432(±0.12)
performed a simple simulation calculating the accuracy of the
different metrics to rank order the behavioral performance of two
randomly sampled observers based on the neural activity (190
simulation trials, see Materials and methods, “Neural metric-based
rank ordering of individual's behavioral performance” section, for
details). Fig. 8 shows the mean percent correct rank ordering rank
of two random observers for the four metrics: pattern classifier
performance1 (AUC), N170 mean ERP, N170 peak ERP and N170
latency. All ERPmetrics were based on observers' difference ERP wave
between face and car trials. Consistent with the correlation results,
accuracy rank ordering subjects based on their behavioral perfor-
mance was higher for the pattern classifier (82%) when compared to
the ERP metrics (peak N170 amplitude 67.37%, mean N170 amplitude
65.79% and peak N170 latency 54.74%; pb0.05).

Temporal window analysis

We divided the EEG signals into time intervals of 40 ms starting at
200 ms preceding the stimulus presentation and extending to 480 ms
post-stimulus. The pattern classifier was separately trained and tested
on EEG data for each of the 40 ms temporal windows. Fig. 9A shows
the correlation coefficient between the pattern classifier performance
and the observers' behavioral performance for each 40 ms temporal
window starting at 200 ms pre-stimulus onset. The correlation
1 The pattern classifier investigated was trained on EEG activity for those trials in
which observers expressed high confidence of their decision and assigned to the object
category based on the identity of the image presented.



Fig. 6. EEGmeasures using pattern classifiers: a) AUC of pattern classifiers trained on all EEG trials using true labels of stimulus identity vs. the behavioral performance (AUC) of all 20
observers. b) AUC of pattern classifiers trained on only EEG trials with high-confidence user ratings using true labels of stimulus identity vs. the behavioral performance (AUC) of all
20 observers.
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increases after stimulus onset and starts to asymptote at the temporal
window starting at 120 ms. Fig. 9B presents the accuracy at rank
ordering observers' behavioral performance based on the pattern
classifier applied separately to each temporal window. The results are
consistent with the correlation data, accuracy is at chance (50%)
before stimulus onset and then increases steeply before asymptoting
(or increasing at a slower rate) 120 ms after stimulus onset. For
comparison, Fig. 9C shows the accuracy (AUC) of the classifier
(averaged across observers and separately run for each temporal
window) predicting whether a car or face stimulus was present.
Although the pattern of results is similar to the correlation and rank
ordering of observers' behavioral performance, there are some
important differences. In particular, for the temporal window
centered around 120 ms, the accuracy predicting the stimulus is
close to chance but the correlation and rank ordering accuracy are
higher.

Temporal analysis using both ERP difference wave and pattern
classifiers are shown in Fig. 10. The top 2 rows of Fig. 10 shows the
Fig. 7. Correlation between behavioral performance(AUC) and different EEG measures.
The pattern classifier used was trained on EEG trials with high-confidence user ratings
using true labels of stimulus identity, the three ERP measures used are for difference
wave and P08 electrode. (|r|N=0.444 for statistically significant r using 95% confidence
interval is marked with dotted line).
difference wave in each 40 ms time windows and the correlation
between observers' behavioral performance and mean amplitude of
the difference wave in the respective windows. The bottom row
shows the discriminative filter weights (see Appendix) obtained
from a pattern classifier for the same windows. Highly positive and
highly negative filter weights (red and blue regions in Fig. 10,
bottom row) denote spatial regions carrying discriminant informa-
tion between faces and cars, as determined by the pattern classifier.
From the figure, it follows that there is significant information
differentiating faces and cars around 170 ms post-stimulus onset
which shows up in the difference wave as well as in the pattern
classifier filter weights. Statistically significant correlation exists
between observers' behavioral performance and the mean ampli-
tude of the difference wave from 170 ms onwards. Furthermore, the
discriminative filter weights suggest that the right hemisphere
contain greater discriminant information compared to the left
hemisphere which is consistent with previous research (Bentin and
Allison, 1996; Kanwisher et al., 1997).
Fig. 8. Accuracy of rank ordering observers using different EEG measures, taking 2
observers at a time: The pattern classifier used was trained on EEG trials with high-
confidence user ratings using true labels of stimulus identity, the three ERP measures
used are for difference wave and P08 electrode (chance performance is marked with
dotted lines).
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Discussion

EEG-based metrics to predict variation in perceptual performance across
individuals

A number of studies have demonstrated that pattern classifiers
applied to EEG (single-trial EEG) can be used to predict the category
of the image presented to the observers, the observers' choices and
also task difficulty (Philiastides et al., 2006; Philiastides and Sajda,
2006). However, ability to reliably predict variation of perceptual
performance across individuals will necessarily depend on howwell
the techniques predict observer choices and the variability in
perceptual performance across individuals. If there is relatively
small variability across individuals' performance then small inac-
curacies in predicting observer choices will have strong detrimental
effects in the ability to use neural activity to rank observers based
on their behavioral performance. Here, we demonstrate that pattern
classifiers applied to EEG data can be used to predict individual
variations in perceptual performance in a categorization task (faces
vs. cars). We compared three pattern classifiers to other more
traditional ERP metrics including peak amplitude of the N170, mean
amplitude of the N170 and peak latency of the N170. We used two
methods to assess the ability of the metrics to predict human per-
ceptual performance: a linear Pearson's correlation and accuracy in
rank ordering behavioral performance based on EEG activity. Both
evaluation methods showed that the pattern classifier was superior
in their ability to predict observers' behavioral performance than
the three ERP metrics evaluated (Figs. 7 and 8). However, the N170
peak and mean amplitudes calculated from the difference wave of
the PO8 electrode correlated moderately with perceptual perfor-
mance across individuals. This result is consistent with previous
studies showing that the difference in ERP can capture aspects of
display properties and human behavioral performance (Philiastides
et al., 2006; Philiastides and Sajda, 2006; Vogel and Machizawa,
2004). We also calculated area under the curve using the three ERP
metrics for a more direct comparison with the pattern classifiers
and demonstrated that area under the curve using ERP metrics does
not correlate significantly with the behavioral performance.

One lingering question is whether the correlation between the
pattern classifier performance and behavior depends on the specific
algorithm and training method used. To answer this question we
investigated three pattern classifiers including linear pattern
classifier (LDA), Support Vector Machines (SVM) and a non-linear
classifier (CPCA) and five different training methods (see Table 2).
The enhanced performance of CPCA over the remaining classifiers
can probably be attributed to the non-linear nature of feature
extraction process of the classifier. Although the CPCA algorithm
trained on high-confidence trials resulted in the highest correlation
with perceptual performance, the difference across algorithms and
training methods were small and suggest a robustness of results
across pattern classifier algorithms and training methods.2
Spatial distribution of electrodes predicting variation in behavioral
performance across individuals

Although the interpretation of the spatial distribution of the
correlations between behavior and ERP measures is constrained by
the limited spatial resolution of EEG and the inverse problem, there
2 The pattern classifiers chosen in the study jointly extract neural information in
spatiotemporal domain and do not require expensive parameter optimization. Use of
data-driven spatial processing approaches like common spatial pattern (CSP) (Muller-
Gerking et al., 1999; Ramoser et al., 2000), resulted in near chance performance;
however optimization of parameters such as frequency bands, time window was not
explored.
are two aspects of the present results that converge with the existing
literature on the face-selective N170 ERP component. First, the finding
that electrodes over lateral occipital and temporal cortex of both
hemispheres show significant positive correlations between perfor-
mance and amplitude (both peak and mean, Figs. 4 and 10) is
consistent with functional neuroimaging (Kanwisher et al., 1997) and
intracranial recording (Allison et al., 1999; McCarthy et al., 1999; Puce
et al., 1999) studies demonstrating that regions of the anterior
fusiform gyrus in both hemispheres exhibit more robust responses to
faces compared to other categories of stimuli. Similarly, the present
finding that these correlations may be stronger in the right
hemisphere than in the left (Fig. 4) also parallels classic fMRI
(Kanwisher et al., 1997) and ERP studies (Bentin and Allison, 1996)
demonstrating that while the face-selective response can be mea-
sured in both hemispheres, the amplitude of the response is larger in
the right occipital and temporal cortex. Together these converging
lines of evidence suggest that the face-selective response carries key
information that aids discrimination across individuals.

Second, the robust positive correlations between amplitude and
behavior at frontal electrode sites (Fig. 10) both during and after the
typical N170 time window are likely indicative of the involvement of
dorsolateral prefrontal cortex in perceptual decision making and
categorization (Freedman et al., 2001; Kim and Shadlen, 1999; Li et al.,
2009,2007; for reviews see Ashby and Maddox, 2005; Heekeren et al.,
2008). This interpretation predicts that the faster these systems are
engaged should be predictive of better performance. Consistent with
this interpretation, we found that during the N170 time window,
onset latency is negatively correlated with performance at frontal
electrodes (Fig. 4) such that those individuals who had shorter onset
latencies had higher performance. The scalp topography of the
behavioral correlations and the classifier weights are consistent
with the known regional specificity of face processing and decision
making, as well as with recent EEG-informed fMRI results using a
similar paradigm (Philiastides and Sajda, 2007).
Neural time-epochs predicting variation in behavioral performance
across individuals

Previous studies have identified EEG waveforms at specific time-
epochs (N170, N200) associated with the presentation of faces when
compared to other non-face objects (Halgren et al., 2000; Jeffreys, 1996;
Liu et al., 2000; Rossion et al., 2003). In addition recent applications of
pattern classifiers to EEG data, (Philiastides et al., 2006; Philiastides and
Sajda, 2006) have characterized the N170 early component as being
related to perceptual processes and distinct from a later component
(330–400 ms) linked to decision processes and a component at 220 ms
(D220) related to task difficulty. Finally, a study (Liu et al., 2002) using
magnetoencephalography (MEG) has found an early trial-averaged
activity (M100) associated with the categorization of face. Unlike
previous studies, we did not find that the neural activity predicting the
performance across individualswas narrowly concentrated in particular
temporal epochs. Instead, the neural activity predicting observers'
behavioral performance was distributed through time (see Fig. 9) and
increased monotonically starting at 120 ms after stimulus onset.
Arguably, this result is reasonable given that we might expect that
observers that perform at higher performance level might show N170
perceptual components that more strongly discriminate face from car
stimuli, different D220 components reflecting the varying task difficulty
experiencedby eachobserver andalsoadifferentamountof information
in the late decision component. Note that if the classifier could perfectly
predict theobserver trial-to-trial choices fromtheEEGactivity in the late
component then the classifiers' performance would perfectly correlate
with observers' decisions. In this context, it is not surprising that the
highest accuracy predicting observers' performance (and correlation)
rests in the later times associated with EEG decision component.
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Conclusion

Within the past several years pattern classification techniques
applied to measures of brain activity have provided key insights into
the neuronal signatures of information processing on a trial-by-trial
Fig. 9. EEG analysis with pattern classifiers using time intervals starting 200 ms before
the stimulus appears to 480 ms post-stimulus onset. a) Correlation between AUC of
pattern classifiers of 20 observers taken over time intervals and their behavioral
performance (AUC) (|r| N=0.444 for statistically significant R using 95% confidence
interval is marked with dotted line). b) Accuracy of rank ordering observers using
pattern classifiers taken over time intervals (chance performance is marked with
dotted lines). EEG analysis with pattern classifiers using time intervals starting 200 ms
before the stimulus appears to 480 ms post-stimulus onset. c) AUC using pattern
classifiers averaged across 20 observers predicting the true stimuli, cars/faces, as a
function of temporal window (chance performance is marked with dotted lines).
basis (Haynes and Rees, 2005; Kamitani and Tong, 2005; Norman
et al., 2006; Philiastides and Sajda, 2006). The present results demon-
strate that pattern classification techniques are a powerful tool for
using the spatiotemporal dynamics of patterns in neural data to
predict individual differences in behavioral performance. We expand
on previous work by systemically comparing different pattern
classifier algorithms and training methods to various standard ERP
techniques to demonstrate that irrespective of algorithm and training
method, pattern classifiers outperform traditional ERP measures in
their ability to predict human perceptual performance. Although the
precise timing and spatial distribution of the predictive efficacy is
likely to change depending on the type of stimulus and task demands
(Philiastides and Sajda, 2006), these findings converge with numer-
ous EEG and fMRI studies that have used pattern classification
techniques to provide insights into the neuronal signatures of human
information processing.
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Appendix A. Classwise Principal Component Analysis (CPCA)

The details of the algorithm will be given for c=2, and the
extension to an arbitrary number of classes is straightforward.

Feature extraction
Let ωi(i=1,2) denote two classes with means μi, and covariances

Σi, and let x⁎∈ℝn be unknown (test) data to be classified. In the first
step, x⁎ is represented in 2 subspaces, S1 and S2 (see Fig. 11), bymeans
of the following transformation

xi* = FTi x*−μið Þ i = 1;2 ðA:1Þ

where the columns of Fi ∈ ℝn×m′
i , are taken as the basis vectors of Si.

The two classes are transformed in a similar fashion (Figs. 11B,C). In
the simplest scenario, Fi=Vi, where Vi ∈ ℝn×m′

i consists of themi (mi

to be chosen) principal components of the class ωi. To account for
classes whose principal directions are nearly parallel, and hence the
projections of the two classes to Si are highly overlapped, Fi is
augmented with Vb∈ℝn×1, where Vb∝μ1−μ2. This step ensures that
class differences arising from the two means are accounted for. For c-
class cases, Vb readily generalizes to a basis spanned by the columns of
the between-class-scatter matrix, commonly used in LDA applications
(Duda et al., 2001). To keep all projections orthogonal, the columns of
Fi=[Vi|Vb] are orthonormalized through the Gram–Schmidt
procedure.

While the above procedure typically yields Si of sufficiently low
dimension (mi′≪n), where the size of data is no longer an obstacle,
further improvements in terms of classification accuracy are possible
with simple feature extraction techniques applied directly to the
subspace Si. If linear feature extraction techniques are used (e.g. LDA),
the mathematical formalism (Eq. A.1) remains the same, with mere
modifications in the definition of Fi. More specifically, Fi=[Vi|Vb]Ti,
where Ti ∈ ℝm′

i ×m is the feature extraction matrix of the chosen



Fig. 10. Temporal analysis using ERP difference wave and filter weights from pattern classifiers: top row shows the difference wave across 40 ms time windows, followed by
correlation between observers' behavioral performances (AUC) and difference wave using mean amplitude across time windows (center row). Only areas showing significant
correlation (correlation coefficient |rN0.444|) are marked in red. The bottom row shows discriminative filter weights (see Appendix) obtained from pattern classifiers for the
corresponding temporal windows. Filter coefficients with large absolute value (red and blue) denote spatial regions carrying information discriminating between face and car.
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method. An information-theoretic technique called Approximate
Information Discriminant Analysis (AIDA) is used, whose advantages
over LDA and similar techniques have been discussed at length in Das
and Nenadic (2008). Unlike LDA, AIDA has no constraints regarding
the final dimension, m, of the feature space. However, EEG data is
generally so sparse (small nt) that the choice of m is severely limited.
Classification
Due to piecewise linear nature of the feature extraction method,

the test data x⁎ is represented in 2 feature subspaces (Figs. 11B,C). To
complete the feature extraction process, one of the subspaces must be
eliminated. It turns out that this question can be solved within a
classification framework, which is the ultimate goal of the technique.
Fig. 11. (a) PCA (dashed) vs. CPCA subspace for 2-class case, where the classes ω1 and ω2 are
produce test feature x 1 (C) x⁎ projected on S2 to produce x⁎2.
Therefore, the formal completion of the feature extraction process can
be viewed as a bi-product of the classification process.

For simplicity, we will assume that the classes are Gaussian with
prior probabilities, P(ωi). A straightforward application of the Bayes
classifier at the first subspace yields

P ωi1 jx1*ð Þ = p x1* jωi1ð ÞP ωið Þ
p x1*ð Þ i = 1;2 ðA:2Þ

where p x1*ð Þ = ∑2
i = 1p x1* jωi1ð ÞP ωið Þ, and P(ωi1|x1⁎) are the poste-

rior probabilities of the two classes in the first subspace. Since
(Eq. A.1) is an affine transformation, both classes remain Gaussian,
i.e. p(.|ωi1)∼N(F1T(μi−μ1),F1TΣiF1).
represented as Gaussian contours. (b) Test data x projected on reduced subspace S1 to
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Similarly, x⁎ is transformed to the second subspace (see Figs. 11C),
and posterior probabilities of the two classes in the second subspace is
calculated as

P ωi2 jx2*ð Þ = p x2* jωi2ð ÞP ωið Þ
p x2*ð Þ i = 1;2 ðA:3Þ

and p(x2⁎) is defined analogous to p(x1⁎). Also note that p(.|ωi2)∼
N(F2T(μi−μ2),F2TΣiF2). Once the posterior probabilities for each
subspace were determined, the scalar value (λ) to be used in Area
under the Receiver Operating Curve (ROC), AUC, calculation was
computed for each trial by taking the difference between the
maximum posterior of each class.

λ = arg max
i=1;2

P ω1i jx1*ð Þ− arg max
i=1;2

P ω2i jxi*ð Þ ðA:4Þ

Discriminative Filter Weights
While features arising in CPCA are abstract, the corresponding

filters (the columns of Fi) have a clear physical interpretation. If the
filter coefficients are organized into a spatiotemporal array, they will
explicitly point to brain areas and time scales involved in encoding the
differences between the two classes (face/car). Examples of such
filters for specific time points are provided in Fig. 10.
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