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Visual search requires humans to detect a great variety of target objects in scenes cluttered by other objects or the natural environment.
It is unknown whether there is a general purpose neural detection mechanism in the brain that codes the presence of a wide variety of
categories of objects embedded in natural scenes. We provide evidence for a feature-independent coding mechanism for detecting
behaviorally relevant targets in natural scenes in the dorsal frontoparietal network. Pattern classifiers using single-trial fMRI responses
in the dorsal frontoparietal network reliably predicted the presence of 368 different target objects and also the observer’s choices. Other
vision-related areas such as the primary visual cortex, lateral occipital complex, the parahippocampal, and the fusiform gyri did not
predict target presence, while high-level association areas related to general purpose decision making, including the dorsolateral pre-
frontal cortex and anterior cingulate, did. Activity in the intraparietal sulcus, a main area in the dorsal frontoparietal network, correlated
with observers’ decision confidence and with the task difficulty of individual images. These results cannot be explained by physical
differences across images or eye movements. Thus, the dorsal frontoparietal network detects behaviorally relevant targets in natural
scenes independent of their defining visual features and may be the human analog of the priority map in monkey lateral intraparietal
cortex.

Introduction
During visual search, objects relevant to behavioral goals must be
located in the midst of a cluttered visual environment. Does the
brain have specialized mechanisms dedicated to efficiently detect
search targets in natural scenes? Single-unit studies have identi-
fied that the lateral intraparietal area (LIP) (Bisley and Goldberg,
2003, 2006, 2010; Ipata et al., 2006, 2009; Thomas and Paré, 2007)
and the frontal eye fields (FEF) (Schall, 2002; Juan et al., 2004;
Thompson et al., 2005; Buschman and Miller, 2007) are regions
in the frontoparietal network involved in visual search in syn-
thetic displays. Both regions show elevated activity to feature
properties defining the search target. LIP also contributes to at-
tending to visual features (e.g., stimulus shape) independent of
eye movements (Sereno and Maunsell, 1998). Neuroimaging
studies have identified activations within the human intraparietal
sulcus (IPS) and FEF during covert shifts of attention in expecta-
tion of a target (Kastner et al., 1999; Corbetta et al., 2000; Hop-
finger et al., 2000; Giesbrecht et al., 2003; Giesbrecht and

Mangun, 2005; Kincade et al., 2005). An important property of
the frontoparietal network is feature-independent coding (Shul-
man et al., 2002; Giesbrecht et al., 2003; Giesbrecht and Mangun,
2005; Slagter et al., 2007; Greenberg et al., 2010; Ptak, 2011).
Unlike earlier visual areas, which respond to fixed visual attri-
butes (orientation, motion direction, etc.), LIP and FEF respond
to behaviorally defined target properties. This property might
allow for feature-independent coding of search targets in natural
scenes within the frontoparietal network.

However, search in natural scenes, unlike the synthetic dis-
plays often used to study search, involves more complex opera-
tions such as object and scene categorization and thus might
employ mechanisms related to object and scene recognition. A
separate literature has investigated the neural correlates of scene
perception (Thorpe et al., 1996; Fabre-Thorpe et al., 1998; Van-
Rullen and Thorpe, 2001; Codispoti et al., 2006; Peelen et al.,
2009; Walther et al., 2009; Ossandón et al., 2010; Phillips and
Segraves, 2010). The parahippocampal place area (PPA), retro-
splenial cortex (RSC), and lateral occipital complex (LOC) have
been shown to contribute to scene perception (Peelen et al., 2009;
Walther et al., 2009; Park et al., 2011): the PPA response primarily
reflects spatial boundaries (Kravitz et al., 2011; Park et al., 2011),
whereas the LOC response contains information about the scene
content (Peelen et al., 2009). However, studies investigating scene
categorization typically use a restricted set of object categories
[e.g., animal vs nonanimal, cars vs people (Thorpe et al., 1996;
VanRullen and Thorpe, 2001; Peelen et al., 2009)]; thus, it is
unknown whether these areas exhibit feature-independent cod-
ing of search targets in scenes regardless of their categories and
visual features.
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We investigated the neural correlates mediating visual search
in natural scenes for a large set of target objects from a range of
categories using multivariate pattern classifiers to analyze single-
trial fMRI activity. Our main goals were to identify brain areas
mediating the detection of arbitrary targets embedded in natural
scenes and to determine whether the identified target-related
neural activity correlates with observers’ trial-to-trial decisions.

Materials and Methods
Subjects
Twelve observers (4 male and 8 female; mean age 24; range 19 –31) from
the University of California, Santa Barbara participated in the main ex-
periment. Six additional observers (4 male and 2 female; mean age 22;
range 21–25) participated in a control experiment. All observers were
naive to the purpose of the experiments. All observers had normal or
corrected to normal vision (based on self-report). Before participation,
participants provided written informed consent that had been approved
by the Ethical Committee of the University of California, Santa Barbara.
The observers were reimbursed for their participation with course credit
or money.

Experimental design
Visual stimuli. Stimuli consisted of a set of 640 images of natural scenes
(both indoor and outdoor). Each image was 727 � 727 pixels subtending
a viewing angle of 17.5°. Images were displayed on a rear projection
screen behind the head-coil inside the magnet bore using an LCD video
projector (Hitachi CPX505, 1024 � 768 resolution) within a faraday cage
in the scanner room ( peak luminance: 455 cd/m 2, mean luminance 224
cd/m 2, minimum luminance: 5.1 cd/m 2). Observers viewed the screen
via a mirror angled at 45° above their heads. The viewing distance was 108
cm providing a 24.6 ° field of view.

Visual search experiment. Each image was paired with a cue word that
corresponded to an object present in the image or an object absent from
the image. All targets (for both for target-present and target-absent con-
ditions) were semantically consistent with the scene. The spatial location
and appearance of the target objects in the scenes were highly variable.
The observers had no prior information of the size or position of the
target object in a single image, and the presence/absence of a target object
was not predictable. Among the target-present images, �50% of the
images contained the target on the left side and 50% on the right side. The
stimulus set consisted of two main experimental conditions: target-
present (in the left or right visual field); target-absent. In addition, an-
other condition consisted of a period of central fixation for the duration
of the trial (these fixation trials were included to add jitter to the onsets of
the experimental trials). A single run of the fMRI experiment lasted 6 min
and 46.62 s (251 TRs) consisting of 4 TRs of initial and final fixation, 32
trials of target-present images, 32 trials of target-absent images, and 16
trials of fixation (i.e., null-events used to facilitate deconvolution of the
hemodynamic response). The order of the trials was pseudorandom con-
strained so that each trial type had a matched trial history one trial back
(over all trials in the run) (Buracas and Boynton, 2002). Thus, an addi-
tional trial was included for one of the conditions at the start of each run
to give the first real trial a matched history (on each experimental run one
trial type had 17 repetitions with the first trial being discarded).

Figure 1 A shows the temporal structure of the trials. The duration of
each trial was 4.86 s (3 TRs). Each trial began with the 400 ms presenta-
tion of the cue word followed by 250 ms of fixation and then the 250 ms
presentation of the test scene stimulus. Following presentation of the
stimulus was a period of fixation lasting 250 –750 ms followed by display
of the response cue. After the response cue was removed, subjects were
presented with a central fixation dot.

Observers were required to indicate how confident they were that the
cued target object was present or absent in the scene using an 8-point
confidence scale by pressing one of the buttons of the response boxes
(Lumina fMRI Response Pads, Cedrus Corporation). The 8-point rating
scale consisted of the four buttons on the response pad for each hand. To
control for the effects of motor activity associated with the subjects’
behavioral response, the response mapping between present or absent

and each hand was determined by which response cue was displayed. The
response cues consisted of either a red square or a green triangle and were
randomized among trials (equal probability for either cue). The associ-
ation between the response hand and the response cue was counterbal-
anced across observers.

Saliency control experiment. To control for the low-level physical prop-
erties across the target-present and target-absent image sets, we devised a
control experiment using the image sets but with the cue word replaced
by a fixation that persisted until the scene stimulus was displayed. Instead
of searching for a target object, observers were instructed to search for
saliency regions within the image and reported which side of the scene
stimulus (left vs right) they believed contained the most salient feature.
Responses were recorded with a single button press either with the left or
the right hand. As with the main experiment, the hand the observers used
to respond was determined by a response cue presented after the scene
stimulus. The saliency search task was conducted to control for the pos-
sibility of a correlation between saliency and the target object in the main
study.

fMRI data acquisition. Data were collected at the UCSB Brain Imaging
Center using a 3T TIM Trio Siemens Magnetom with a 12 channel
phased-array head coil. An echo-planar (EPI) sequence was used to mea-
sure BOLD contrast (TR � 1620 ms; TE � 30 ms; flip angle � 65°,
FOV � 192 mm; slice thickness � 3.5 mm, matrix � 78 � 78, 29 coronal
slices) for experimental runs. For one subject we used a sequence with a
210 mm FOV (with all other parameters remaining constant) to accom-
modate the subject’s larger brain. Localizer scans used a higher resolution
sequence (TR � 2000 ms; TE � 35 ms; flip angle � 70°, FOV � 192 mm;
slice thickness � 2.5 mm, matrix � 78 � 78, 30 coronal slices). A high
resolution T1-weighted MPRAGE scan (1 mm 3) was also acquired for
each participant (TR � 2300 ms; TE � 2.98 ms; flip angle � 9°, FOV �
256 mm; slice thickness � 1.1 mm, matrix � 256 � 256).

Localization of regions of interest
Retinotopic regions. We identified regions of interest (ROIs) for each
subject individually using standard localizer scans in conjunction with
each subject’s anatomical scan, which were both acquired in a single
scanning session lasting �1 h 45 min. These ROIs included areas in early
visual cortex, high-level visual cortex and the frontoparietal attention
network. The ROIs in retinotopic visual cortex were defined using a
rotating wedge and expanding concentric ring checkerboard stimulus in
two separate scans (Sereno et al., 1995). Each rotating wedge and con-
centric ring-mapping scan lasted 512 s, consisting of 16 s of initial and
final fixation with 8 full rotations of the wedge or 8 full expansions of the
ring stimulus, each lasting 60 s. Wedge stimuli in the polar-mapping scan
had a radius of 14° and subtended 75° consisted of alternating black and
white squares in a checkerboard pattern. The colors of the checkerboard
squares flickered rapidly between black and white at 4 Hz to provide
constant visual stimulation. To ensure that subjects maintained central
fixation, a gray dot at fixation darkened for 200 ms at pseudo-random
intervals, and subjects were required to indicate with a button press when
this occurred. The eccentricity mapping procedure was the same except
that a ring expanding from fixation (width 4°) was used instead of a
rotating wedge. By correlating the BOLD response resulting from the
activation caused by the wedge and ring stimuli, we determined which
voxels responded most strongly to regions in visual space, and produced
both polar and eccentricity maps on the surface of visual cortex that were
mapped onto meshes of the individual subject’s anatomy.

The center of V1 overlays the calcarine sulcus and represents the whole
contralateral visual field with its edges defined by changes in polar map
field signs designating the start of V2d and V2v. Areas V2d, V2v, V3d, and
V3v all contain quarter-field representations with V3d adjacent to V2d
and V3v adjacent to V2v. Area V4 contains a full field representation and
shares a border with V3v (Tootell and Hadjikhani, 2001; Tyler et al.,
2005). The anterior borders of these regions were defined using the ec-
centricity maps. Area V3A and V3B are dorsal and anterior to area V3d,
with which they share a border, and contain a full hemifield representa-
tion of visual space. To separate them it is necessary to refer to the
eccentricity map that shows a second foveal confluence at the border
between V3A and V3B (Tyler et al., 2005).
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Functional regions. We used functional localizers to identify the area
hMT�/V5, LOC, fusiform face area (FFA), and parahippocampal place
area (PPA). We also defined areas implicated in the processing of eye-
movements and spatial attention: the frontal and supplementary eye-
fields (FEF and SEF) and an area in IPS. Area hMT�/V5 was defined as
the set of voxels in lateral temporal cortex that responded significantly
higher ( p � 10 �4) to a coherently moving array of dots than to a static
array of dots (Zeki et al., 1991). The scan lasted for 376 s consisting of 8 s
of initial and final fixation with 18 repeats of 20 s blocks. There were three
block types consisting of black dots on a mid-gray background viewed
through a circular aperture. Dots were randomly distributed within the
circular aperture with a radius of 13 degrees and a dot density of 20
dots/deg 2. During the moving condition, all dots moved in the same
direction with a speed of 3 deg/s for 1 s before reversing direction. In the
edge condition, strips of dots (width 2 deg) moved with opposite motion
to each other creating kinetically defined borders. To define area hMT�/
V5, a GLM analysis was performed and the activation resulting from the

contrast, moving � stationary dots, was used
to define the region constrained by individual
anatomy to an area within the inferior tempo-
ral sulcus.

The LOC, FFA, and PPA localizers were com-
bined into a single scan to maximize available
scanner time. In the combined localizer scan, re-
ferred to as the LFP localizer, the scan duration
was 396 s consisting of three, 12 s periods of fixa-
tion; at the beginning end and the middle of the
run, and five repeats of the 4 experimental condi-
tions each lasting 18 s. These conditions were as
follows: intact objects, phase-scrambled ob-
jects, intact faces, and intact scenes. During the
18 s presentation period, each stimulus was
presented for 300 ms followed by 700 ms of
fixation before the next stimulus presentation.
To maximize statistical power, the LFP scan
was run twice for each individual using differ-
ent trial sequences. To define areas of func-
tional activity, a GLM analysis was performed
on the two localizer scans. Area LOC was de-
fined as the activation revealed by the intact
objects � scrambled objects contrast (Kourtzi
and Kanwisher, 2001). The FFA region was iso-
lated by the face stimuli � intact object stimuli
contrast (Kanwisher et al., 1997). The PPA re-
gions by the scenes � faces � objects contrast
(Epstein and Kanwisher, 1998). All localizer re-
gions were guided by the known anatomical
features of their areas reported by previous
groups.

We localized brain areas in the frontoparie-
tal attention network by adapting an eye-
movement task developed by Connolly et al.
(2002). The task consisted of eight repeats of
two blocks each lasting 20 s: one where a fixa-
tion dot was presented centrally and a second
where every 500 ms the fixation dot was moved
to the opposite side of the screen. During the
moving dot condition, the dot could be posi-
tioned anywhere along a horizontal line per-
pendicular to the vertical meridian and
between 4 and 15 degrees away from the screen
center. Subjects were required to make sac-
cades to keep the moving dot fixated. Contrast-
ing the two conditions in a GLM analysis
revealed activation in the FEFs, SEFs, and a re-
gion in the IPS (Table 1).

We defined a control ROI centered on each
subject’s hand motor area from BOLD activity
resulting from hand use identified using a
GLM contrasting all task trials versus fixation

trials. During fixation trials, subjects were not required to respond and so
there would be no hand use. The hand area ROIs were then defined about
the activity resulting from this contrast in the central sulcus (primary
motor cortex), guided by reference to studies directly investigating mo-
tor activity resulting from hand or finger use (Lotze et al., 2000; Alkadhi
et al., 2002).

fMRI data analysis. We used FreeSurfer (http://surfer.nmr.mgh.harvard.
edu/) to determine the gray-white matter and gray matter-pial boundaries
for each observer from their anatomical scans, which were then used to
reconstruct inflated and flattened 3D surfaces. In addition, a group average
mesh was constructed using spherical surface-based cortical registration to
allow more accurate group analyses. Functional runs were preprocessed us-
ing FSL 4.1 (http://www.fmrib.ox.ac.uk/fsl/) to perform 3D motion correc-
tion, alignment to individual anatomical scans, high-pass filtering (3 cycles
per run), and linear trend removal. No spatial smoothing was performed on
the functional data used for the multivariate analysis. SPM8 (http://www.fil.

Figure 1. Overview of the experimental paradigm and behavioral results. A, Timeline of events in a trial: each trial was 4.86 s (3
TRs); the trial began with the 400 ms presentation of the cue word followed by 250 ms of fixation and then the 250 ms presentation
of the scene stimulus. Following presentation of the stimulus was a period of fixation lasting 250 –750 ms followed by 400 ms
display of the response cue. After the response cue was removed, subjects were presented with a central fixation dot. Observers
responded expressing their confidence about the presence or absence of the cued target object using an 8-point confidence scale.
Observers were trained to swap hands when pressing the response buttons depending on the response cue that was randomized
among trials. B, The behavioral performances (quantified by the AUC values) of individual observers detecting the presence of
target objects in natural scenes during the visual search study. Error bars correspond to SEs of the mean across sessions.
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ion.ucl.ac.uk/spm/) was used to perform GLM analyses of the localizer and
experimental scans. Regions of interest were defined on the inflated mesh
and projected back into the space of the functional data.

Multivoxel pattern analysis. Multivariate pattern classification analysis
(MVPA) has been successfully applied to fMRI data to evaluate the in-
formation context of multivoxel activation patterns in targeted brain
regions (Norman et al., 2006; Weil and Rees, 2010; Serences and Saproo,
2012). Here, we used regularized LDA (Duda et al., 2000) to classify the
patterns of fMRI data within each ROI. The regions we investigated
included V1, V2d, V2v, V3A, V3B, V3d, V3v, V4, LOC, hMT�/V5, RSC,
FFA, PPA, FEF, SEF, and IPS. We used the union of corresponding ROIs
in the left and right hemispheres to construct a single region for each
ROI. We normalized (z-score) each voxel time course separately for each
experimental run to minimize baseline differences between runs. The
initial data vectors for the multivariate analysis were then generated by
shifting the fMRI time series by three TRs to account for the hemody-
namic response lag. All classification analyses were performed on the
mean of the three data-points collected for each trial with the first data-
point taken from the start of the trial when the cue word is presented. For
each single trial, the output of the multivariate pattern classifier was a
single scalar value generated based on the weighted sum of the input
values across all voxels in one specific ROI. We used a leave-one-out cross
validation scheme across runs. The classifier learned a function that
mapped between voxel activity patterns and experimental conditions
from nine of the 10 runs. Given a new pattern of activity from a single
trial in the left-out testing run, the trained classifier determined whether
this trial belonged to target-present or target-absent condition.

In addition, we used a multivariate “searchlight” analysis (Krieges-
korte et al., 2006) to determine the discrimination performance in areas
of the brain for which we had not defined ROIs. The searchlight method
estimates the MVPA classification performance of the voxels contained
within a sphere of a given radius about a central voxel. This spherical
searchlight is then moved systematically over each voxel in the brain and
the procedure repeated with the resulting discrimination performance
assigned to the voxel at the center of the searchlight. In this way a map of
the classification performance over the whole brain can be assessed. We
used a searchlight analysis where the bounding sphere had a radius of 9
mm and contained 153 voxels. For each group of voxels we applied the
same LDA classification technique as that used for the ROI-based analy-
sis described previously. The searchlight analysis was performed on each
individual’s data in their native anatomical space. To produce the group
map the individual searchlight maps were transformed into the group
average space by using Freesurfer’s cortical surface matching algorithm
before statistical testing. In brief, the surface matching procedure in-
volves inflating all subjects’ white matter meshes into unit spheres while
retaining the cortical depth information on the 2D surface of the sphere.
The cortical geometry of all subjects is then matched by transformation
of the spherical surfaces and the resulting registration can then be applied
to volumetric data allowing, for example, BOLD activity to be projected
into the group average space.

Evaluation using area under ROC. For each individual observer, the
performance of both behavioral response and MVPA decision variables
were quantified by the area under the receiver operating curve, referred
to as AUC (DeLong et al., 1988). The value of AUC was calculated using
a non-parametric algorithm that quantifies, for each scalar value (8-
point confidence ratings or MVPA decision variables derived the multi-
variate pattern classifier) corresponding to the target-present trials, the
probability that it will exceed the responses to all the values correspond-
ing to the target-absent trials in the test dataset.

Az �
1

PA�p

P �
a

A

step��p � �a	 �
1

2
���p � �a	, (1)

where P and A are the total number of target-present and target-absent
trials; �p and �a are the scalar values for the pth target-present trial and
ath target-absent trial, respectively; and step is the heavyside step func-
tion defined as follows:

step�x	 � � 1, if x � 0
0, if x � 0 �. (2)

This function measures the frequency in which a given response to a
target-present trial exceeds the response to the target-absent trial.

The impulse function � quantifies the instance in which the values for
the target-present and target-absent trials are a tie. The function � is
defined as follows:

�� x	 � �1, if x � 0
0, if x 
 0�. (3)

Choice probabilities. In addition to discriminating the experimental con-
ditions (target-present vs target-absent), we also conducted a choice
probability analysis of the single-trial fMRI data. The trials were labeled
based on the observers’ choices of response rather than the type of the
stimulus conditions. For the correct trials, the labels based on choice or
stimulus conditions were the same; whereas for the incorrect trials, the
labels derived from the behavioral choices were used regardless of the
stimulus conditions. The same MVPA procedures and evaluation of per-
formance described above were applied for the choice probability.

Image-specific analysis. For each individual image, we computed the
proportion of observers responding to that specific image as target-
present, as well as the proportion of MVPAs applied to individual brains
categorizing the same image as target-present. We thus obtained two
scalar values corresponding to behavior and neural activity, respectively.
A scalar value of 0 represented that all of the observers (or MVPA) labeled
one particular image as target-absent, while the value of 1 represented
that all of the observers (or MVPA) labeled that image to be target-
present. Similarly, the value of 0.5 represented that half of the observers
(or MVPA) decided the image to be target-present and the other half
decided the image to be target-absent condition. The 640 pairs of scaled
values corresponding to the 640 images were computed for each ROI,
resulting in a correlation coefficient associated with each ROI.

False discovery rate control to correct for multiple comparisons. Unless
mentioned otherwise, all multiple hypothesis tests were false discovery
rate (FDR) corrected. The FDR control procedure described by Benja-
mini and Hochberg (1995) was used to correct for multiple comparisons.
Let H1, . . . , Hm be the null hypotheses and P1, . . . , Pm their correspond-
ing p values. These p values were ordered in ascending order and denoted

by P(1), . . . , P(m). For a given �, find the largest k such that p�k	 	
k

m
�,

then reject all H(i) for i � 1, . . . , k. The FDR-corrected p values were
computed by dividing each observed p value by its percentile rank to get
an estimated FDR.

Eye-tracking data collection and analysis. Nine of the 12 observers had
their eye position recorded during the fMRI experimental scans using an
Eyelink 1000 eye-tracker (Eyelink). This system uses fiber optics to illu-
minate the eye with infra-red light and tracks the eye orientation using
the pupil position relative to the corneal reflection. Observers completed
a nine-point calibration before the first experimental run, and repeated
the calibration before subsequent runs if the calibration began to degrade
due to head motion. All visual stimuli presented on the screen were
within the limits of the calibration region. An eye movement was re-
corded as a saccade if both velocity and acceleration exceeded a threshold
(velocity � 30 °/s; acceleration � 8000 °/s 2). A saccade outside an area
extending 1° from the fixation was considered an eye-movement away
from fixation. Data collected during the whole trial of 4.86 s was ana-
lyzed, starting from the frame corresponding to the onset of the stimuli
display of one trial until the frame of the end of a trial (before the display
onset of the following trial). An interval of 4.86 s was examined for any

Table 1. The mean Talairach coordinates for the regions in the frontoparietal
network

Area

Left hemisphere Right hemisphere

x y z mm 2 x y z mm 2

FEF �37.4 �5.7 50.9 1385.7 34.0 �9.4 50.3 1565.3
SEF �7.8 �3.0 58.6 1079.6 6.2 �6.6 57.4 1090.8
IPS �21.2 �62.9 50.8 2034.5 20.3 �61.4 54.0 1988.7
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eye movements occurring within the trial that could potentially affect the
BOLD signal, starting with the onset of the cue word and including the
display and response periods. The first analysis examined three measures
across target-present and target-absent conditions: (1) the mean total
number of saccades, (2) the mean of saccade amplitude (in degrees of
visual angle), and (3) the standard deviation of distance of eye position
from central fixation on a trial. The second analysis examined the mea-
sure of average distance from eye position to central fixation, which is an
absolute value of relevant eye positions. We used the average distance of
horizontal and vertical coordinates of eye positions to the horizontal and
vertical coordinates of the center fixation as a two-dimensional input to
the pattern classifier to discriminate the presence or absence of the target
objects in the natural scenes.

Results
Behavioral performance
Figure 1B shows the behavioral performance deciding on the
presence versus absence of the target for each individual observer
during the scanning session. The AUC values of the 12 observers
in the target search study ranged from 0.72 (�0.03, SEM) to 0.84
(�0.01, SEM), with a mean of 0.78 and SEM of 0.01 across all
observers.

To control for the effects of target sa-
liency, a new set of observers were pre-
sented the same set of images that were
used in the main study and reported a bi-
nary decision whether the right or left side
of the image appears more salient. If the
main target detection task and the saliency
control task were orthogonal, then the ob-
server saliency judgments should be at
chance predicting the presence of the tar-
gets specified in the main study. We used
the binary decisions of the saliency judg-
ment (left vs right) corresponding to the
target-present and the target-absent
image-sets to obtain a target detection
AUC. The AUC values for six observers
were 0.43, 0.45, 0.47, 0.47, 0.47, 0.45
(mean 0.46, SEM 0.01; if the assignment
of right vs left saliency is switched for tar-
get presence vs absence, the resulting
mean AUC is 0.54). For each of the six
observers, the AUC values discriminating
target-present versus target-absent were
not significantly different from chance (p
values of each observer were 0.02, 0.02,
0.23, 0.28, 0.20, 0.05, after FDR correction
no p value satisfied p � 0.05) confirming
that the target search tasks and saliency
tasks were close to orthogonal.

Pattern classifier predicting stimulus
type and choice probability in ROIs
defined by localizers
The first MVPA analysis investigated
which cortical areas contained informa-
tion about the detection of the arbitrary
target objects within natural scenes. We
restricted our analysis to the ROIs iden-
tified by standard localizers. These ROIs
include visual areas from V1 to V4,
hMT�/V5, LOC, FFA, PPA, RSC, and
the frontoparietal network regions in-
cluding IPS, FEF, and SEF (Fig. 2, Table

1). Within each ROI, we used the pattern classifier to predict
from single-trial fMRI data whether the displayed natural im-
age contained the target object or not. Second, we performed a
choice probability analysis on a trial-by-trial basis to investi-
gate the contribution of different cortical areas.

Figure 2B displays the AUC value averaged across 12 observ-
ers for each ROI separately. The average AUC is significantly
higher than chance in IPS and FEF (p � 0.001) for discriminating
between the target-present versus target-absent experimental
conditions. MVPA performance for all the low visual areas, the
object-, face-, and scene-selective areas could not predict target
presence above chance level (the FDR-corrected p values of these
regions were all larger than 0.01). Similarly, the classifier perfor-
mance was highest in IPS and FEF for discriminating single-trial
behavioral choices of observers. A repeated-measures ANOVA
showed a significant difference across ROIs for both classifying
stimulus (F(15,165) � 6.05, p � 0.001) and behavioral choice
(F(15,165) � 6.85, p � 0.001), but no significant difference be-
tween stimulus and choice (F(1,352) � 0.72, p � 0.40). The average
classifier performance discriminating choice was slightly higher

Figure 2. Multi voxel pattern classifier analysis. A, Regions of interest defined by retinotopic and functional localizer scans. B,
Average MVPA performance (AUC averaged across the 12 observers in the main study) for each ROI predicting stimulus type
(target-presence vs target-absence) and observers’ choices during the target search task; average MVPA performance (AUC aver-
aged across the 6 observers in the control study) for each ROI predicting stimulus type in the saliency search task. C, Individual MVPA
performance (IPS) of the 12 observers in the main study predicting stimulus type and observers’ choices during the target search
task. D, Individual MVPA performance (IPS and V3d) of the six observers in the control study predicting stimulus during the saliency
search task.
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than discriminating stimulus type in IPS
and FEF, but not statistically significant
(p � 0.33). Overall, IPS was the best pre-
dictor, with an average AUC of 0.59 �
0.01 for discriminating target-present ver-
sus target-absent trials and AUC 0.60 �
0.01 for predicting observers’ single trial
choice.

The classifier performances discrimi-
nating stimulus and choice using fMRI ac-
tivity in the region of IPS for each
individual observer are shown in Figure
2C. In general, the classification analysis
revealed similar trends across the 12 ob-
servers when discriminating stimulus and
choice but with considerable variation in
the classifier performance (Fig. 2C).

Saliency control task to quantify
contributions of physical differences
between target-present and target-
absent image sets
Using the same set of 640 images, observ-
ers in the control study performed a sa-
liency search task that was orthogonal to
the target detection task in the main study.
To assess the possible contributions of the
low-level physical differences across the
target-absent and target-present image
sets to the differences in BOLD activity in
the main study, we conducted the same
pattern classification analysis discrimi-
nating target presence/absence with the
saliency control data. Figure 2B shows
classifier performances for each region of
interest (third column). We applied the classifier to the single-
trial fMRI data of the saliency control study to predict the
whether an image contained the target-present or not (as speci-
fied in the main study). Figure 2B shows that for the saliency task,
no classifier performance for ROIs discriminating target-present
versus target-absent conditions was significantly above chance at
the criteria of p � 0.001 FDR corrected. The AUC values of two
regions, V3d (AUC � 0.53, p � 0.006) and IPS (AUC � 0.52,
0.007), did show statistical significance at the criteria of p � 0.01
FDR corrected. To investigate whether the significance of group
average performance was driven by specific observers, the AUC
values for each individual observers were shown in Figure 2D.
The classifier performance for each individual observer using
fMRI activity in the IPS and V3d in the saliency search task was
not significantly different from chance (the FDR corrected p val-
ues of all observers were larger than 0.05). Thus, the results indi-
cate that the effect of the neural activity in the frontoparietal
network discriminating target presence/absence in target search
task cannot be attributed to differing low-level physical proper-
ties across the image sets.

Correlation between MVPA decision variable and behavioral
confidence rating
The choice probability analysis in the previous section shows that
neural activity can classify the binarized behavioral decisions
(target-present or target-absent) of the human observers. We also
investigated whether there was a relationship between the classi-
fier scalar decision variable as extracted with the MVPA and the

confidence level of the observers’ decisions. If the measured clas-
sifier decision variable indeed is related to sensory evidence for
the presence/absence of a target object, then a significant positive
correlation between the two variables should exist.

Figure 3A depicts the two-variable histogram of the confi-
dence ratings versus the classifier decision variables computed
from fMRI response in IPS on a trial-by-trial basis for one repre-
sentative observer. The color of the two-variable histogram codes
the number of trials falling into each frequency bin. The correla-
tion between the two variables is significant, with a correlation
coefficient of 0.30 (95% confidence interval [0.22 0.37], p �
0.001). In Figure 3B, the correlation coefficients for all the ROIs
of each individual observer were computed and then averaged
across all the observers to show the relative strength of correlation
among regions. Consistent with our stimulus classification and
choice probability results, FEF and IPS resulted in the strongest
correlation [r � 0.09 (FEF), r � 0.13 (IPS), p � 0.001]. Further-
more, Figure 3C shows the correlation coefficients resulting from
the three regions within the frontoparietal network (FEF, SEF,
IPS), for each individual observer. There is a large amount of
variance in the strength of the correlation and significance levels
across the observers (Fig. 3C).

Image-specific relationship between behavioral performance
and neural activity
We conducted an image-specific analysis to determine whether
there is a relationship between the observers’ behavioral difficulty
in finding a target with specific images and the neural activity

Figure 3. Correlation between MVPA decision variables and behavioral confidence ratings (single-trial analysis). A, The two-
variable histogram of the behavioral confidence ratings versus the classifier decision variables computed from fMRI response in IPS
from single trials of one representative observer. The correlation coefficient between the two variables was 0.30, with a confidence
interval of [0.22 0.37]. B, Average correlation coefficients across 12 observers between the behavioral confidence ratings versus the
classifier decision variables computed from fMRI activity of each ROI for on a trial-by-trial basis. C, The correlation coefficients in
regions within the frontoparietal network for each individual observer. Error bars show the 95% confidence interval.
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elicited in observers’ brains to that image. Note that a significant
correlation between individual observers’ single trial confidence
rating and the MVPA decision variable does not necessarily imply
a relationship between observers’ ensemble behavioral decisions
for an image and their collective neural responses. For example, if
each image elicits idiosyncratic neural responses and behavioral
decisions across observers, then there should not be any relation-
ship between the MVPA decision variable and ensemble observer
behavior for a specific image.

We investigated the image-specific correlation between the
observers’ choices and the choices based on pattern classifiers
using single-trial fMRI activity. For each of the 640 images, we

quantified the proportion of observers re-
sponding to that image as target-present
and the proportion of pattern classifiers
classifying that same image as target-
present. The 640 pairs of scaled values of
each image were computed for each ROI,
resulting in a correlation coefficient asso-
ciated with each ROI (Fig. 4A, first col-
umn). We found significant positive
correlation (p � 0.001) in several regions
including IPS, SEF, FEF, RSC, and
hMT�/V5; still, IPS had the strongest
correlation (r � 0.50, 95% confidence in-
terval [0.43 0.56], p � 0.001) compared
with other regions. For IPS, we plotted the
pairs of scaled values of each image as a two-
point histogram (Fig. 4B), in which the
horizontal-axis and vertical-axis correspond
to the neural and behavioral relative frequen-
cies predicting target-present. The color
indicates the number of images within
each bin. The image-specific analysis indi-
cates that the proportion of human ob-
servers behaviorally choosing an image as
target-present and the proportion of ob-
servers predicted by the MVPA from
fMRI activity was significantly corre-
lated in the frontoparietal attention net-
work, indicating a strong relationship
between image-specific human behav-
ior and neural activity.

We also investigated the image-specific
correlation between averaged confidence
ratings and the classifier decision variables
averaged for each individual images. Figure
5B shows a two-variable scatter plot of the
behavioral confidence ratings versus the
classifier decision variables computed from
fMRI response in IPS for each individual
image averaged across 12 observers (ex-
pected maximum 12 trials), revealing a sig-
nificant positive correlation between the
two variables (r � 0.53, 95% confidence in-
terval [0.46 0.59], p � 0.001). Similar anal-
yses for all the ROIs (Fig. 5A) indicate
significant correlation (p � 0.001) in several
regions including IPS, SEF, FEF, PPA, RSC,
and hMT�/V5, although IPS has the stron-
gest correlation compared with other ROIs.

The image-wise analysis allows us to
scrutinize individual sample images cor-

responding to different bins in the histogram. Figure 4B shows
three groups of natural images, in which the semantically associ-
ated target objects were indicated by the cue words. The three
groups illustrated correspond to the following: images that all
observers and all pattern classifiers highly agreed to be target-
present (Fig. 4B, top right), images that all observers and all
pattern classifiers highly agreed to be target-absent (Fig. 4B, bot-
tom left), and images that for which there was high disagreement
among observers and among pattern classifier about its class:
target-present or target-absent (Fig. 4B, top left). To prevent
selection bias, the four sample images associated with each group
were randomly picked from all the images within each of the

Figure 4. Image-specific relationship between human behavior and neural activity. A, For each image, the proportion of
observers responding to that image as target-present and the proportion of pattern classifiers predicting from neural activity the
same image as target-present were quantified, resulting in a pair of scalar values. The 640 pairs of scaled values in each ROI were
correlated to compute a correlation coefficient for each ROI. B, The 640 pairs of scaled values in the region of IPS were plotted in a
grid figure, in which the color indicates the number of images that are in each grid. Three groups of images were simultaneously
illustrated: images that observers or pattern classifiers highly agreed to be target-present, those highly agreed to be target-absent,
and those highly disagreed to be target-present or target-absent.
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three cells in the two-dimensional histogram. Visual scrutiny of
the images for the three groups provides a qualitative impression
that high agreement across observers and classifiers about target
presence or absence is associated with relatively “easier” images.
In contrast, high decision disagreement among observers and
pattern classifiers is corresponding to relatively “difficult”
images.

We conducted a similar image-wise analysis with the saliency
control data to rule out the possible effect of low-level physical
differences across the target-present and target-absent image sets.
Figure 4A shows (second column in each bar figure) the correla-
tion coefficients computed from the saliency control fMRI data
for each ROI and the behavioral decisions from the main study.
None of the ROIs resulted in statistically significant correlation
(the FDR corrected p values of all ROIs were all larger than 0.05)
between the behavioral choices of observers in the main study
and the choices based on pattern classifier decision variables us-
ing fMRI activity recording during the saliency task.

Quantifying the effect of eye movements using fixation
patterns and classifier analysis
Even though observers were instructed to maintain steady fixa-
tion during our studies, involuntary eye movements could con-

taminate our results. To assess the possible contributions of eye
movements to the pattern classifier’s ability to discriminate the
presence of targets and observer choices, we analyzed the eye-
tracking data of the nine observers (the first three observers’ eye-
tracking data were not available due to technical issues). We
found no significant differences in the mean total number of
saccades, the mean saccade amplitude, or the SD of distance from
eye position to central fixation on a trial between target-present
and target-absent conditions (p � 0.54, p � 0.33, p � 60 for the
three metrics, respectively). The various eye movement metrics
are summarized in Table 2. In addition, we conducted a multi-
variate pattern classifier analysis based on the two-variable mea-
sure of average distance of horizontal and vertical coordinates of
eye positions to the two coordinates of the central fixation. Table
3 shows the classifier performance discriminating target-present
versus target-absent trials was not significantly above chance
(AUC � 0.50, p � 0.74), using the average distance of eye posi-
tion from central fixation on a trial. The AUC values of all the
nine observers were also not higher than chance (the FDR cor-
rected p values of all ROIs were all larger than 0.05), indicating
that the ability of the neural activity in IPS and FEF to discrimi-
nate target presence/absence cannot be driven by consistent dif-
ferences in eye movement patterns.

Quantifying the effects of motor activity associated with the
behavioral response
To avoid a consistent stimulus-response mapping, the response
mapping between present or absent and each hand was deter-
mined by which response cue (randomized among trials) was
displayed. In addition, the association between the response hand
and the response cue was counterbalanced across observers. To
further rule out the alternative explanation that motor activity
influenced classification performance, we defined a bilateral ROI
from the hand regions of left and right primary motor cortex for
each observer to estimate the effectiveness of the control. We
conducted pattern classifier analyses using neural activity in the
hand regions of the primary motor cortex (combined left and
right regions) and showed that the MVPA performance was not
significantly different from chance discriminating target-present
versus target-absent trials (group averaged AUC � 0.52, SEM �
0.01, p � 0.11), indicating that the ability of the neural activity in
the frontoparietal network to discriminate target presence/ab-
sence cannot be explained by motor activity.

Quantifying the effects of response time differences between
target-present and target-absent conditions
Many visual search studies have shown that the RT for target-
absent trials is longer than that for target-present trials (Wolfe,
1998). We found the same trend of RT differences in our visual
search experiment: the group average RT for target-present trials
was 1.03 s while the group average RT for target-absent trials was
1.20 s. The RT difference of 0.17 s between target-present and
target-absent conditions was statistically significant (p � 0.05).
To investigate whether the RT differences between experimental
conditions can account for the neural activity in frontoparietal
network discriminating target-presence versus target-absence,
we conducted an MVPA analysis using neural activity in each
ROI to classify short-RT trials versus long-RT trials, regardless of
the target presence/absence conditions. If RT differences were the
only factors that account for the MVPA performance classifying
target-present versus target-absent trials, then we should be able
to classify short-RT trials versus long-RT trials with a comparable
performance. We defined short-RT trials as those trials with

Figure 5. Image-specific correlation between MVPA decision variables and behavioral con-
fidence ratings (averaged across observers for each individual image). A, Correlation coeffi-
cients between the behavioral confidence ratings versus the classifier decision variables
computed from fMRI activity of each ROI for each individual image averaged across 12 observers
(expected maximum 12 trials). B, The two-variable scatter plot of the behavioral confidence
ratings versus the classifier decision variables computed from fMRI response in IPS for each
individual image. The correlation coefficient between the two variables was 0.53, with a confi-
dence interval of [0.46 0.59].
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shorter RTs than the median RT and long-RT trials as those with
times longer than the median RT. Table 4 shows that no ROI
resulted in above chance performance in discriminating
short-RT from long-RT trials (the FDR corrected p values of all
ROIs were all larger than 0.05), indicating that the RT differences
cannot account for the effects in the frontoparietal network dis-
criminating target presence/absence. In addition, if differences in
RTs across conditions account for the ability of the MVPA to
discriminate target present versus absent trials, then we might
also expect a positive correlation between RT differences and
MVPA performance discriminating target present/absent trials:
observers with high RT differences might have higher associated
MVPA AUC discriminating target present versus absent trials.
This was not the case. The correlation between the RT differences
and the AUC values in the IPS (r � 0.07, p � 0.84), FEF (r � 0.07,
p � 0.83), SEF (r � 0.00, p � 0.99), and other ROIs (p � 0.05)
were not statistically significant.

Searchlight analysis
To further investigate whether other brain regions aside from the
ones identified by our functional localizers (e.g., the frontopari-
etal network) were involved in the visual search task, we con-
ducted a spherical search light analysis measuring patterns

discriminating target-presence versus target-absence. Figure 6
shows the results for the classification analysis displayed on a
flattened mesh constructed from the average mesh of the 12 ob-
servers. Classification accuracy was significantly above chance
( p � 0.005 uncorrected; t test across all subjects against
chance) in three regions covered by our ROIs, the frontal eye
fields, supplementary eye fields, and the intraparietal sulcus.
However, significant discrimination performance was also
found in left ventral premotor cortex (PMv), right dorsolat-
eral prefrontal cortex (DLPFC), and anterior insular cortex
(AIC). The Talairach coordinates of the above areas are shown
in Table 5.

Discussion
Feature-independent coding of target detection
Neuroimaging studies (Peelen et al., 2009; Walther et al., 2009;
Park et al., 2011) have identified two mechanisms of scene per-
ception. One is the representation of spatial boundaries of scenes
in PPA (Kravitz et al., 2011; Park et al., 2011); the other is the
representation of content and/or category in LOC (Peelen et al.,
2009; Park et al., 2011). The scene categorization tasks are effec-
tively visual search tasks, restricted to detecting a subset category
of target objects in natural scenes (e.g., animal, face, car). Un-
known is whether the brain regions revealed by scene categoriza-
tion tasks also mediate the detection of arbitrary target objects in
scenes.

Our results showed that pattern classifiers using single-trial
fMRI activity in the frontoparietal network can discriminate the
presence of 368 different target objects in natural scenes. Further-
more, the neural activity correlated with observers’ trial-by-trial
decisions and decision confidence. Together, the results suggest
the existence of a neural mechanism for feature-independent
coding of search targets in natural scenes in the frontoparietal
network. Our results do not imply that object-related areas do
not code target objects in natural scenes. Instead, we suggest that
different targets do not elicit a similar pattern of activity in the
object areas. If each target elicited a unique object-specific pat-
tern of activity in LOC, then it is unlikely that MVPA would
reliably detect the presence of a target across the variety of objects
in our experiment. In contrast, a study with a single target object
type would elicit consistent activity in LOC that could be decoded
by MVPA.

Table 2. Measures of eye movements

Sub

Mean no. of saccades (SEM) Mean saccades amplitude (SEM) Standard deviation of distance from fixation (SEM)

Target-absent Target-present Target-absent Target-present Target-absent Target-present

Sub4 6.54 (0.60) 6.23 (0.62) 2.58 (0.32) 2.62 (0.30) 1.46 (0.35) 1.54 (0.37)
Sub5 0.52 (0.31) 0.49 (0.28) 1.81 (0.43) 1.66 (0.26) 0.56 (0.53) 0.19 (0.10)
Sub6 2.76 (0.75) 2.52 (0.70) 2.22 (0.39) 2.20 (0.38) 0.85 (0.31) 0.80 (0.28)
Sub7 3.93 (0.74) 3.83 (0.70) 2.09 (0.26) 2.14 (0.26) 0.87 (0.31) 0.88 (0.31)
Sub8 3.88 (0.57) 4.02 (0.56) 1.88 (0.20) 2.05 (0.22) 0.73 (0.21) 0.89 (0.22)
Sub9 6.56 (0.82) 6.65 (0.80) 3.79 (0.52) 3.80 (0.48) 2.67 (0.49) 2.75 (0.48)
Sub10 4.77 (0.92) 4.68 (0.87) 1.73 (0.21) 1.74 (0.23) 0.54 (0.19) 0.54 (0.20)
Sub11 2.77 (0.57) 2.92 (0.52) 3.37 (0.57) 3.74 (0.50) 1.38 (0.42) 1.44 (0.39)
Sub12 4.10 (0.86) 4.16 (0.86) 4.85 (0.53) 4.80 (0.53) 2.97 (0.57) 2.72 (0.57)
Mean 3.98 (0.63) 3.94 (0.63) 2.70 (0.36) 2.75 (0.37) 1.34 (0.30) 1.31 (0.30)

Table 3. Classifier discriminating target presence/absence using average absolute distance of eye position from fixation on a trial

Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Sub10 Sub11 Sub12 Mean

Classifier performance (SEM) 0.53 (0.02) 0.51 (0.04) 0.53 (0.02) 0.55 (0.02) 0.47 (0.02) 0.46 (0.02) 0.48 (0.03) 0.47 (0.03) 0.53 (0.02) 0.50 (0.01)

Table 4. Group average classifier performance discriminating short-RT versus long-
RT trials

ROI Classifier performance (SEM)

V1 0.50 (0.01)
V2d 0.51 (0.01)
V2v 0.52 (0.01)
V3A 0.52 (0.01)
V3B 0.52 (0.01)
V3d 0.50 (0.01)
V3v 0.51 (0.01)
V4 0.52 (0.01)
LOC 0.51 (0.01)
hMT�/V5 0.50 (0.01)
RSC 0.49 (0.01)
FFA 0.51 (0.01)
PPA 0.50 (0.01)
FEF 0.51 (0.01)
SEF 0.50 (0.01)
IPS 0.51 (0.01)
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The role of the frontoparietal network
in feature-independent target detection
Neuroimaging studies have shown that
the categorical properties of natural
scenes are encoded in object-selective cor-
tex (Peelen et al., 2009) and that percep-
tual decisions are mediated by the lateral
intraparietal area and the dorsolateral
prefrontal cortex (Heekeren et al., 2008).
We found above chance MVPA perfor-
mance for discriminating target presence/
absence in the frontoparietal network but
not in early visual areas, object-, face-, and
scene- selective areas. Our findings con-
verge with studies implicating the fronto-
parietal network in visual search. Bisley
and colleagues proposed that LIP acts as a
priority map of behavioral relevance (Bisley and Goldberg, 2010;
Bisley, 2011). FEF can signal the target location in visual search
(Schall, 2002; Juan et al., 2004; Thompson et al., 2005; Buschman
and Miller, 2007), and this neural selection process does not nec-
essarily require saccade execution (Thompson et al., 1997). Our
findings provide evidence that the frontoparietal network is not
only involved in search of synthetic displays, but also the detec-
tion of target objects in scenes. Moreover, our results suggest the
existence of a neural mechanism for feature-independent coding
of targets during search of scenes regardless of their category. This
is also consistent with the feature-independent coding property
of the frontoparietal network with synthetic displays (Shulman et
al., 2002; Giesbrecht et al., 2003; Giesbrecht and Mangun, 2005;
Slagter et al., 2007; Greenberg et al., 2010; Ptak, 2011).

Critically, the saliency control, the eye movement controls,
the motor activity control, and the analysis of RT differences rule
out important alternative interpretations of our results. Saliency
is a concern because the images sets between conditions were
physically different. To rule out effects of low-level physical dif-
ferences across image sets (VanRullen and Thorpe, 2001), we
conducted a control experiment using the same stimuli and an
orthogonal saliency search task. The results showed that no ROI
was significantly above chance at discriminating target-present
versus target-absent image sets, indicating that the effect of the
neural activity in the frontoparietal network classifying target
presence/absence cannot be attributed to low-level physical
properties across the image sets.

Another concern is that the MVPA results were driven by
systematic differences in eye movements between conditions.
Ruling out this alternative is particularly important because FEF
and IPS are known to be activated by eye movements and atten-
tion (Corbetta, 1998; Gitelman et al., 2000; Bisley, 2011; Ptak,
2011). We minimized eye movements by using brief image pre-
sentations, instructing observers to maintain fixation, and mon-
itoring observers’ eye movements. The statistical analyses and a
separate MVPA analysis of the eye movement data did not reveal
significant differences or discriminatory information across
target-present and target-absent conditions. These analyses indi-
cate that the MVPA results classifying target presence cannot be
accounted for by differential eye-movement patterns.

Motor activity is another potential concern. The pattern clas-
sifier analysis using neural activity in the primary motor cortex
showed that motor activity cannot discriminate target-presence
versus target-absence. This control analysis, combined with the
response cue procedure that randomized the response hand on a
trial-by-trial basis, support the notion that the ability of the neu-

ral activity in the frontoparietal network to discriminate target
presence/absence cannot be explained by motor activity.

Another concern is that the MVPA performance could poten-
tially be explained by RT differences between the target-present
and target-absent trials. A review of the RT effects on BOLD
activity (Yarkoni et al., 2009) revealed the areas (lateral and ven-
tral prefrontal cortex, anterior insular cortex, and anterior cingu-
late cortex) whose BOLD amplitude significantly correlated with
response time. Notably, the areas affected did not include IPS or
FEF (Yarkoni et al., 2009). A control MVPA analysis showed that
no ROI discriminated between short-RT and long-RT trials, in-
dicating that the RT differences cannot account for the MVPA
performance in the frontoparietal network. There is the possibil-
ity that the measured RTs mostly reflected the retrieval of the
appropriate response selection rule corresponding to the color
response cue rather than time on task related to the search task.
Such a case would leave open the possibility that a difference in
time on task across target present and absent trials might account
for our results. However, even in the scenario that time on task is
resulting in differential activity across target present versus ab-
sent trials, it would be unclear as to why the differential pattern of
activity would be observed only in IPS and FEF and not in other
vision areas.

Other association areas in target detection
The searchlight analysis we conducted revealed brain regions not
included in our ROI analysis that could discriminate between
target-present and target-absent trials (Fig. 6). These were left
PMv, right DLPFC, and AIC. PMv is well placed to combine
information necessary for perceptual decision taking input from
visual cortex (Markowitsch et al., 1987), SEF (Ghosh and Gattera,
1995), parietal areas (Borra et al., 2008), and prefrontal cortex
(Boussaoud et al., 2005). Its role in motor planning and connec-

Figure 6. Group-average searchlight analysis discriminating target-presence versus target-absence at p � 0.005
(uncorrected).

Table 5. Talairach coordinates of areas discriminating target-presence versus
target-absence significantly above chance for the group

Area

Left hemisphere Right hemisphere

x y z x y z

FEF �27.4 �2.5 42 21.1 �1.4 49
SEF �9.1 6.9 47 7.6 13.3 44.7
IPS �17.7 �68.1 48.7 18.4 �64.2 48.4
PMv �34.1 13.9 22.4 NA NA NA
DLPFC NA NA NA 33.6 35.7 26.5
Insula cortex �54.3 7.7 �9.5 20.9 21.4 �13.3

p � 0.005 uncorrected; t test across all subjects against chance.
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tion to primary motor cortex (Ghosh and Gattera, 1995) suggest
a direct link between decision making and response selection. Its
ability to discriminate between conditions in our task may reflect
a general perceptual decision-making process rather than one
specific to visual search. The discrimination performance ob-
served in right DLPFC may also be more related to a general
perceptual decision-making process than one specific to visual
search (Heekeren et al., 2004). AIC is activated in many studies
investigating decision making and has been implicated in a range
of processes including pain perception (Ploghaus et al., 1999),
self recognition (Devue et al., 2007), conscious awareness (Craig,
2009), and lapses of attention (Weissman et al., 2006). The wide
range of processes in which AIC is activated suggests that it is
involved in more general decision-making processes rather than
visual search.

Neural activity and decision confidence
Our results show that the classifier decision variables extracted
from the frontoparietal network not only relate to binary deci-
sions but also correlate with the confidence of human decisions
when searching for targets in natural scenes. This finding agrees
with recent monkey neurophysiology work showing that LIP ac-
tivity represents formation of the decision and the degree of cer-
tainty underlying the decision (Kiani and Shadlen, 2009).

Predicting image-specific behavioral difficulty from ensemble
neural activity
We investigated the relationship between neural activity and be-
havioral responses on an image-by-image basis. If the decisions
are greatly determined by the content of the images, then we
might expect that certain images would tend to elicit specific
behavioral responses and associated brain activity patterns. Im-
ages with difficult search targets might elicit “target-absent” re-
sponses from a majority of observers and also neural activity that
is consistent with target-absent experimental condition. If so,
then it might be possible to predict the behavioral difficulty of
images using aggregates of neural activity across multiple brains.
Our results suggest that this is indeed the case (Fig. 4). Those
images for which observers (or MVPA) rarely agreed on the de-
cision can be subjectively identified as hard images. We found
that several ROIs exhibited a significant relationship between
image-specific decisions and neural activity with the highest cor-
relation in the frontoparietal network (Fig. 4). The parietal dis-
tribution of the correlation is consistent with studies that have
shown parietal representation of task difficulty (Philiastides et al.,
2006; Kiani and Shadlen, 2009).

Conclusion
We provided evidence using fMRI and MVPA that regions in the
frontoparietal network can code the presence of a variety of target
objects in natural scenes arguing for a feature-independent cod-
ing mechanism. The activity in these regions is tightly linked with
choice, decision confidence, and task difficulty.
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