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Group decisions and even aggregation of multiple opinions lead to greater decision accuracy, a phenomenon
known as collective wisdom. Little is known about the neural basis of collective wisdom and whether its
benefits arise in late decision stages or in early sensory coding. Here, we use electroencephalography and
multi-brain computing with twenty humans making perceptual decisions to show that combining neural
activity across brains increases decision accuracy paralleling the improvements shown by aggregating the
observers' opinions. Although the largest gains result from an optimal linear combination of neural decision
variables across brains, a simpler neural majority decision rule, ubiquitous in human behavior, results in
substantial benefits. In contrast, an extreme neural response rule, akin to a group following the most extreme
opinion, results in the least improvement with group size. Analyses controlling for number of electrodes and
time-points while increasing number of brains demonstrate unique benefits arising from integrating neural
activity across different brains. The benefits of multi-brain integration are present in neural activity as early as
200 ms after stimulus presentation in lateral occipital sites and no additional benefits arise in decision related
neural activity. Sensory-related neural activity can predict collective choices reached by aggregating
individual opinions, voting results, and decision confidence as accurately as neural activity related to decision
components. Estimation of the potential for the collective to execute fast decisions by combining information
across numerous brains, a strategy prevalent in many animals, shows large time-savings. Together, the
findings suggest that for perceptual decisions the neural activity supporting collective wisdom and decisions
arises in early sensory stages and that many properties of collective cognition are explainable by the neural
coding of information across multiple brains. Finally, our methods highlight the potential of multi-brain
computing as a technique to rapidly and in parallel gather increased information about the environment as
well as to access collective perceptual/cognitive choices and mental states.
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Introduction

Many animals rely on groups to make decisions in tasks such as
foraging for food, placement of their nests, and navigation (Couzin,
2009; Conradt and Roper, 2009; Conradt and List, 2009). Honeybee
scouts dance around possible future homes for a nest site but then
jointly converge towards one site (Seeley and Buhrman, 1999). Birds
migrate in groups to increase navigational accuracy (Simons, 2004)
and cockroaches collectively decide on shelter selection (Halloy et al.,
2007). Collective decisions lead to more accurate and faster decisions
and thus provide clear benefits for survival. Humans also typically
benefit frommaking decisions in groups (Sorkin et al., 2001; Laughlin
et al., 2002) and important decisions such as medical, judicial and
governmental decisions are commonly made in consultation with a
group of experts. These benefits result not only from human social
interaction; even the aggregation of multiple human opinions
through simple averaging, majority rules or more sophisticated
algorithms can also lead to remarkable improvements in decision
accuracy. This was first shown by Francis Galton who analyzed the
opinions of 787 people about the weight of an ox and found that
combining their numerical assessments resulted in a median estimate
that was remarkably close to the true weight of the ox (Galton, 1907).
The same principle is also manifested in present day futures markets
(Surowiecki, 2005). Furthermore, modern human society is increas-
ingly organized around the aggregation of collective opinions
reflected in people's increased use of web ratings for daily choices
about consumer products, lodging, food and entertainment.

Despite its ubiquity in the animal kingdom and modern human
society, little is known about the neural basis of collective wisdom.
The benefits of combining multiple opinions might arise from the
integration of noisy neural information about the impending choices
represented in the brains of the participating individuals. This would
suggest that the there is more accurate information related to a
decision represented in multiple brains than that in an individual
brain because each brain might encode different aspects of a sensory
event and also because of noise reduction through brain pooling. But
can we obtain a neural measurement of the additional information
stemming from the integration of information across multiple sensory
and decision neural systems? At what neural processing stage does
the benefit arise? Visual perceptual decisions follow a neural
processing cascade starting with the early cortical visual areas in the
occipital lobe and then through the dorsal and ventral streams to
parietal and prefrontal areas which have been related to perceptual
decision making and categorization (Heekeren et al., 2004; Heekeren
et al., 2006). Do the benefits of collective wisdom arise in later
decision stages or are they present even in early sensory coding
stages? Furthermore, if the increased neural information about the
stimulus encoded in multiple brains is related to the decision reached
by aggregating human opinions, then we should be able to predict
trial-to-trial group choices from neural activity (e.g., Parker and
Newsome, 1998; Gold and Shadlen, 2007; for electroencephalogra-
phy, EEG; Philiastides and Sajda, 2006a).

In addition, the possibility of using machine learning algorithms to
fuse neural activity across multiple individuals might represent a
starting point for a new field of multi-brain computing, akin to multi-
sensor fusion in engineering (Luo and Kay, 1989; Shah et al., 1997),
but which focuses on gathering more information through combining
measurements across different biological sensors rather than physical
detectors. The technology could be a contribution to the rising field of
neuroergonomics (Parasuraman, 2003; Parasuraman and Rizzo, 2007)
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and could be potentially used for improvement of neural-based object
classification techniques, for prediction of group decisions from
neural activity and monitoring collective cognitive and mental states.

Here, we applied neural decoding methods involving multivariate
pattern classifiers (Parra et al., 2005; Kamitani and Tong, 2005; Haynes
and Rees, 2005) to the EEG activity of twenty humans categorizing
images of objects (faces vs. cars) in noise and introduce multi-brain
computingmethods to investigate the inherent information relevant to
the perceptual categorization task in the brains of multiple human
observers quantified using statistical decision theory. Our motivation is
two-fold: to advance our understanding of the neural basis of collective
wisdom by evaluating the relationship between integrated neural
activity and group decisions based on behavioral opinions and also to
evaluate the potential utility of multi-brain computing. Rather than
have individuals interact to reach a group decision we obtained a group
choice by applying simple rules to aggregate individual opinions
expressed using a confidence rating.1 For example, the simple majority
rule (Sorkin et al., 1998) has been well-documented as a common
decision rule used by humans (Hastie and Kameda, 2005) and can easily
be mimicked by aggregating opinions and/or neural decision variables
extracted from brain activity. The majority rule can be compared to
other decision rules such as an optimal linear decision rule and/or an
extreme opinion scheme. Following, we outline the specific theoretical
and practical questions addressed in the current work.
Neural vs. behavioral benefits of collective wisdom

First, we evaluate whether the accuracy predicting the perceptual
stimulus presented to the observers increases when integrating multi-
brain activity in a similar manner to the performance benefits resulting
from aggregating observers' behavioral opinions. We determine how
many brains' EEGs need to be combined to achieve a collective neural-
based classifier that achieves the behavioral accuracy discriminating the
stimuli of a single human observer. We investigate how different
combination rules compare when integrating neural decision variables
across multiple brains. In particular, we assess how a neural imple-
mentation of the majority rule, common in humans and some animals
(Couzin, 2009; Conradt and List, 2009; Conradt and Roper, 2009;
Laughlin et al., 2002; Surowiecki, 2005), compares to themore resource
demanding optimal linear pooling and a suboptimal neural extreme
decision rule, and their relation to using similar decision rules to pool
observers' behavioral opinions.
Relationship between multi-brain neural activity and behavioral group
choices and decision confidence

To assess the relationship between the stimulus-related EEG and
the choice reached by aggregating observer opinions, we evaluate:
1) the trial-to-trial correspondence (choice probability) between the
collective neural-based classifier's decision and that achieved from
aggregating the observers' opinions. 2) The correlation between
voting results using a majority decision based on the behavioral
opinions and those resulting from using the neural decision variables.
3) Whether there is a relationship between the collective neural
decision variable and the group decision confidence determined by
linearly pooling the observer opinions. 4) Finally, we assess the ability
to rank order the behavioral performance of two random groups of
individuals from their collective neural activity.
1 Although there are clear limitations of not studying the dynamics of the group
decisions, one advantage of obtaining group decisions from aggregation of individual
opinions is that it allows for statistically intensive estimation of performance benefits
across a larger number of group configurations and sizes that would otherwise be
difficult to evaluate experimentally (i.e., group size N10).
Early sensory vs. late decision related neural activity

To evaluate whether the benefits of collective integration of
perceptual judgments arise in early sensory coding vs. late decision
stages we take advantage of previous work establishing EEG time-
epochs associated with early sensory activity (150–220 ms post
stimulus onset; Philiastides and Sajda, 2006b; Philiastides and
Heekeren, 2009) and a late decision component (300–400 ms after
stimulus onset) for a similar car vs. face task. In particular, we evaluate
neural pattern classifier performance for different temporal windows
of EEG activity to assess whether the improvements in accuracy
identifying the stimulus from neural activity arising from integration
of neural decision variables across brains is different for the early
sensory and late-decision time-epochs. In addition, we compare the
ability of early sensory related EEG vs. late decision related activity to
predict the choices reached by aggregating observers' behavioral
opinions.

Decision time savings from integration of neural activity across brains

Studies have shown how collective decisions might allow groups
of animals to more rapidly take actions such as in navigation of birds
(Couzin, 2009). Such findings imply that analyses using neural activity
across multiple brains rather than an individual brain should permit
reaching desired decision accuracies at an earlier time. Yet, the
relative benefits of integrating neural activity across time vs. across
brains depend on the temporal correlation of the neural signals within
individual brains as well as the correlation of neural activity across
brains. Here, we estimate the potential time-savings in reaching a
decision with a given accuracy from integrating neural activity across
brains.

Materials and methods

Observers and procedure

Twenty observers (ages: 18–26) naïve to the purpose of the study
participated in the experiment. The study consisted of 1000 trials split
into 5 successive sessions of 200 trials (preceded by 1000 stimulus-
familiarization trials). Observers began a trial by fixating a central
cross and clicking the mouse button. After a variable delay of 0.5–1.5 s
the stimulus was presented at fixation for 40 ms (see Fig. 1a). A blank
screen was presented for 0.5–1.5 s after which a response screen was
shown. Observers rated the confidence of their decision (a rating of 1
indicated complete confidence that a face was presented and a rating
of 10 indicated complete confidence that a car was presented) by
clicking rating buttons on the response window. Participants were
instructed only to move the mouse when the response window
appeared. Premature mouse clicks were given feedback. No feedback
was given about the correct status of their decisions.

Stimuli and display

The stimulus set consisted of 12 faces (six frontal view, six 45°
rotated) and 12 cars (six frontal, six 45° rotated) that were 290×290
pixel 8-bit gray scale images. Face imageswere obtained from theMax
Planck Institute for Biological Cybernetics face database (Troje and
Bülthoff, 1996). All images were filtered to achieve a common
frequency power spectrum (the average of all images). Contrast
energy of all images was matched to be 0.3367 deg2. Noise was
created by filtering independent white Gaussian noise fields (stan-
dard deviation of 3.53 cd/m2) by the common power spectrum and
then added to the original stimuli. Observers sat 125 cm from a
linearized display set at a mean luminance of 25 cd/m2 andmaximum
of 50 cd/m2. Images subtended 4.57° of visual angle and were
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presented on a 19-inch ViewSonic Color E90F monitor (resolution
1024×768) with a refresh rate of 75 Hz in a darkened room.
Electroencephalogram data acquisition and pre-processing

Electroencephalographic (EEG) activity was recorded from 64 Ag/
AgCl sintered electrodesmounted in an elastic cap and placed according
to the International 10/20 System. The horizontal and vertical electro-
oculograms (EOG)were recorded from electrodes placed 1 cm lateral to
the external canthi (left and right) and above and below each eye,
respectively. The data were sampled at 512 Hz, re-referenced offline to
the signal recorded from the central midline electrode (Cz), and then
band-pass filtered (0.01–100 Hz). Trials containing ocular artifacts
(blinks and eye movements) detected by EOG amplitudes exceeding
±100 mV or by visual inspection were excluded from the analysis. The
average ERPwaveforms in all conditionswere computed time-locked to
stimulus onset and includeda 200 mspre-stimulus baseline and 500 ms
post-stimulus interval.
Feature reduction for each individual

The entire EEG data for a trial consisted of 358 time potentials for
63 different electrodes resulting in a total of 22,554 independent
inputs. Because of the high dimensionality, for a training set (900
trials of EEG data) 17 electrodes with the highest t-values were pre-
selected for a single observer: F1, F5, C5, TP7, P7, P9, PO7, Iz, POz, Afz,
F8, FCz, CP6, P8, P10, PO8, and PO4. The same 17 electrodes were then
used for all data sets and observers. Analysis of pre-stimulus activity
and of simulated data confirmed that no systematic bias in pattern
classifier performance resulted from the feature selection.

Pattern classifier for separate EEG windows of 20 time-points

For each observer the pattern classifier was trained on windows
with 20 time points (at 512 Hz sampling rate each window spanned
39.05 ms) for 17 electrodes. Training was done on 900 trials of EEG
data and then tested on the remaining 100 trials. We used a linear
pattern classifier (Duda et al., 2000; Eqs. (1)–(3)) applied separately
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to non-overlapping time windows with different onsets (to=−166,
−127,−88,−49,−10, 30, 68, 108, 147, 186, 225, 264, 303, 342, 381,
420 and 459 ms where 0 ms is stimulus onset). For each window the
training of the classifier was restricted to data from that specific time
window.
Combining EEG data across windows

To obtain a final classifier performance across 10 different
windows with onsets from 108 ms to 459 ms, the scalar values of
the classifier from the individual windows from the training data set
were used as an input to a 2nd pattern classifier that combined the
scalar values of the classifiers applied to individual windows. The
weights across the 10 windows were used to reduce for each trial the
EEG activity for each observer to a single scalar neural decision
variable and obtain a performance for the classifier across all window
epochs. The main results and dependence with number of observers
(Fig. 2b) remained similar when using a pattern classifier or averaging
to combine variables across time windows.
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Optimal linear combination

A single scalar decision variable (Di) was obtained by linearly
combining the ratings or neural decision variables for each trial
(image) across observers,

Di = wtRi ð1Þ

where w is a column vector containing the linear weights applied to
the vector Ri containing the ratings or neural decision variables of the
observers and the superscript t is transpose. This algorithm is optimal
when the underlying distributions are equal variance and Gaussian
distributed. The decision outcome was determined by comparing the
decision variable (Di) to a scalar decision criterion (Cl; the subscript l
denotes linear) that maximized proportion correct:

Oi =
1; if Di b Cl
2; if Di N Cl

� �
ð2Þ

where Oi=1 indicates a choice for the face category and Oi=2 a
choice for the car category.

For each random sample of N observers, the behavioral ratings/
neural decision variables for 900 trials were used for the training and
performance was obtained in the remaining 100 trials. The cross-
validation procedure was repeated 10 times. The best linear weights
(w) for the observers were estimated from the training data:

w = K−1
‹Rf ›−‹Rc›½ � ð3Þ

where ‹Rf› is a column vector containing the mean rating/neural
decision variable for the face images for the N observers, ‹Rc› is a
column vector containing themean rating/neural decision variable for
car images for the N observers, and K−1 is the inverse of the
covariance matrix which is calculated from the ratings from training
images (900 trials):

K = ‹ Rf−‹Rf ›ð Þ Rf−‹Rf ›ð Þt› + ‹ Rc−‹Rc›ð Þ Rc−‹Rc›ð Þt›: ð4Þ

In order to stabilize the covariance across all procedures, invert K
and avoid singular matrices, we regularized the matrix by adding a
diagonal matrix with its diagonal elements proportional to the
diagonal elements of the covariance matrix K:

Kreg = K + p Diag Kð Þ ð5Þ

where p is a proportional constant set to 2 and the function Diag
zeroes all off-diagonal elements of K. Results did not vary greatly with
varying values of p (1, 2, 3 or 4).

The decision criterion (Cl) was also estimated from training data
(900 trials) and applied to the 100 trials left out.

Majority decision rule

For each trial the number of individuals choosing one category
(e.g., face) can be expressed:

Mi = ∑
n

j=1
step Rj;i−cj

� �
ð6Þ

where Rj,i is the rating/neural decision variable for the ith trial/image
for the jth individual ranging from 1 to 10. cj is the criterion which for
the ratings is the value that subdivides the categories corresponding
to face and those to car (cj=C=5.5). For the neural data, the neural
decision criterion (cj) was varied for each jth individual to find the
value that maximizes the choice probability. Once the criterion was
determined from the training data a neural majority decision was
implemented for each trial of the testing data by first making binary
decisions for each individual based on their neural decision variable
and neural decision criterion and then using Eq. (8). Also, step is the
heavyside step function defined as:

step xð Þ = 1; if x N 0
0; if x ≤ 0

� �
ð7Þ

The outcome of the majority decision is then given by:

Oi =
1; if Mi b ðn� 1Þ=2
2; if Mi N ðn� 1Þ=2

� �
: ð8Þ

The above equations work for most cases considered in this paper
with odd number of individuals and do not cover the cases in which
there are an even number of individuals and a possibility of a tie
between group members choosing the two possible decisions. For the
one such case we analyzed (e.g., n=20), if there was a tie, we simply
randomly chose a decision.

Extreme decision rule

For each trial the group decision was based on the observer whose
response (rating or neural decision variable) departed the most from
the decision criterion (C). For the behavioral data the subdivision
between the two categories (C=5.5) was set as the criterion. For the
neural data we evaluated for each trial which observer had a neural
decision variable that departed the most (in units of standard
deviations) from their neural criterion (cj).

Di = maxabs
N

j¼1
Rj;i−cj

� �
ð9Þ

where the maxabs(x) function takes the response Rj,i with the largest
absolute value difference from the criterion, c. The response outcome
Oi is then determined using Eq. (2). Note that Eq. (9) does not handle
the possibility for the behavioral ratings in which there is a tie
between the most extreme decision choosing car and face (e.g., an
observer chooses a rating Rj=1 and another in the group chooses
Rj=10). For these tie cases we compared the number of observers
choosing each of the two extreme ratings and chose the category with
the highest number of observers. If this was still a tie, we counted the
number of observers in the 2nd most extreme rating (e.g. Rj=2 vs.
Rj=9).

Prediction for performance improvement if observers were independent
detectors

For comparison to empirical results we calculated the predicted
performance (proportion correct) with number of observers for an
optimal combination across independent detectors. The theoretical
prediction relies on the assumption that each observer's responses to
car and face trials are described by an equal variance Gaussian model
in which the index of detectability, d′, is the difference between the
mean of the distributions divided by their common standard
deviation. The index of detectability as a function of the number of
observers (n) for the case of varying indexes of detectability across
observers is calculated as (Sorkin & Dai, 1994):

d0
n =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n σ2

d′1
+ d02

� �s
ð10Þ

where d′ is themean indexof detectability across all observers andσd′1
2 is

the variance of the observers' indexes of detectability. These theoretical
predictions from Eq. (10) assume that a very large number of trials are
available to train the classifier and thus represent an upper-bound. To
obtain a proportion correct prediction from the predicted d′n we simply
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assumed an optimally placed criterion (d′n/2). Proportion correct
identification is then given by:

Pc = ∫
d
0
n =2

−∞
g xð Þdx ð11Þ

Note, that in the theoretical prediction in Fig. 2a there is an
additional increase in performance from n=1 to n=2 due to the fact
that for nN1, the decision criterion is optimally placed while
individual observers (n=1) might use suboptimal criteria.

Effect of correlation across observer responses on the relationship between
performance of optimal linear combination and majority decision rules

We performed a simulation sampling for each trial and observer
random variables from two normal distributions (with unit variance).
For a face trial the normal distributions were assumed to have a larger
mean and the car trials a zero mean. Means for the simulated twenty
observers for the face trials were matched to observers' index of
detectability from the study. Critically, the sampled random variables
were given a pre-determined correlation which for simplicity was
assumed to be constant across observers. All procedures to combine
responses were identical to those in the paper except that the
simulation results were based on 1000 different group configurations.
We varied the correlation across observer's simulated decision
variables and evaluated the relationship between performance of
the optimal linear combination and the majority decision rule.

Cumulative integration of EEG data across time

To obtain a classifier performance using neural activity from
stimulus onset up to T ms, we first ran separate classifiers across
10 ms temporal windows. We then obtained the performance of
integrating the classifier decision variables across windows ranging
from 0 to T ms where the upper limit of the integrating window (T)
was systematically increased by 10 ms.

Theoretical calculation of classifier performance from cumulative
integration of EEG data across time for the scenario of temporally
independent samples

We compared our empirical results to theoretical calculations of
performance of the multivariate pattern classifier expected if the
noise values in the neural activity (EEG) were statistically indepen-
dent samples through time. The theoretical calculation assumes that
mean difference in classifier decision variables across the two stimuli
categories remained constant across time and the noise was
temporally statistically independent.

To estimate performance of the classifier that integrates neural
decision variables across for this theoretical scenario we used the
well-known relationship between the index of detectability (d′) and
the number of independent samples integrated (Green and Swets,
1989; Eckstein et al., 1996)

d0
NT

= d
0
0

ffiffiffiffiffiffi
NT

p
ð12Þ

where d′NT
is the estimated index of detectability (mean difference

between the decision variable to face and car divided by a standard
deviation of the decision variable) at time T after integrating NT

independent samples of 10 ms of EEG activity and do′ is the average
index of detectability of the pattern classifier in the first temporal
sample which is statistically above chance (70 ms). To estimate the
initial index of detectability, do′ we used the proportion correct from
our data for each group size and transformed it to an index of
detectability using the following relationship (Green and Swets,
1989),

d0
0 = 2· Φ−1 Pcoð Þ ð13Þ

Where Φ−1 is the inverse normal cumulative function. Eq. (12) was
used to obtain d′NT

from d′0. Finally to obtain PcNT
from d′NT

, we used
Eq. (11).

Controls to ensure no over-fitting of the pattern classifier to the data

To ensure that none of our procedures (feature selection) led to
over-fitting we did not train using any EEG activity from earlier
epochs of a trial. In addition, we trained and tested the classifier on
pre-stimulus presentation data with the same procedures as with the
post-stimulus presentation data. Pre-stimulus classifier performance
at chance confirmed no overtraining in our classifier technique.

Procedures to predict observer choices

To predict observer choices, the pattern classifier weights were
calculated from the training data sets using labels for each trial based
on the observer's decision (car or face) rather than the presented
image. All other procedures were identical to those used to predict the
stimulus type.

Evaluation of performance using Area under the ROC

Performance evaluation for individual observers of both behav-
ioral ratings and neural decision variables was evaluated in the 100
trials left out using Eq. (1) to compute the scalar value for each trial.
Performance as measured by the Area under the Receiver Operating
Curve (Az) was calculated using a non-parametric method that
quantifies for each value of the pattern classifier to the face stimuli
(across F face trials) the probability that it will exceed the responses to
all the pattern classifier values to the car stimuli across all C car trials
in the test data set (DeLong et al., 1988):

Az =
1
FC

∑
F

f
∑
C

c
step Df−Dcð Þ + 1

2
δ Df−Dcð Þ ð14Þ

where Df is the scalar decision variable for the fth face stimuli, Dc is the
scalar decision variable for the cth car, F and C are the total number of
face and car trials and step is the heavyside step function defined in
Eq. (14).

The function δ is the impulse function defined as

δ xð Þ = 1; if x = 0
0; if x ≠ 0

� �
ð15Þ

The first term (step function) inside the summation measures the
frequency in which a given classifier response to a face stimuli
exceeds the response to the car stimuli. The second term with the
impulse function handles the instances in which the pattern classifier
values for the face and car stimuli are a tie and the classifier is forced
to guess (i.e., the frequency of correct decisions for ties is ½ the
frequency of the ties). Use of a parametric binormal model to calculate
the Area under ROC resulted in similar results to the non-parametric
method. The training and testing procedure above was repeated 10
times by dividing the total of 1000 trials into 10 groups of 100 trials
and then leaving one group of 100 trials for the test and training on
the remaining 9 groups with a total of 900 trials. The resulting Az from
the 10 cross-validations were averaged.
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Evaluation of performance using proportion correct

Because the Az measure of performance cannot be computed for
the majority decision rule, we also quantified performance using a
proportion of correct trials which can be computed for all decision
rules as:

P =
1
I
∑
I

i
δ Oi−qið Þ ð16Þ

where Oi is the outcome for the ith trial (1 or 2), qi indicates the
stimulus type presented (face=1; car=2), δ is as defined before
(Eq. (15)) and I is the total number of trials.

Estimation of error in measurements of pattern classifier performance on
individual observer data

Error bars for the pattern classifier performance on the EEG data of
individual observers (Fig. 1b) were calculated by calculating the
standard error across Area under the ROC for the 10 fold cross
validation sets. Performance was compared to chance (0.5) using
single sample t-tests with corrections for multiple comparisons (false
discovery rate).

Estimation of error in measurements of performance after combining
multiple observer data

We are interested in comparing performance on the same data set
across groups of different numbers of observers. To calculate the error
due to observer variability and group configuration we used bootstrap
methods to calculate the uncertainty associated with the mean
performance of a classifier for 400 samples of groups of N observers.
Error bars were standard deviations calculated across bootstrap
samples of observers calculated as follows:

a) We created one hundred bootstrap lists of 20 observers.
b) For each bootstrap list we randomly sampled four hundred groups

of N observers.
c) For each random group we combined across observers using the

specific decision rule (linear, majority, most extreme).
d) We computed the average Area under the ROC or proportion

correct for the 400 random samples for each bootstrap sample.
e) We computed the standard deviation of the average Area under

the ROC/proportion correct curve across bootstrap samples.

One potential problem in implementing the bootstrap technique
within the context of combining ratings/neural activity across
observers with a linear pattern classifier is that having the same
observer twice represented in the covariance matrix will lead to a
singularity. However, the regularizer (see Eq. (4)) allows for inversion
of the matrix when the same observer is repeated in the covariance.

Across brain vs. within brain pattern classifier performance

We also evaluated the benefits of integrating information across
multiple brains while controlling for the data size used. We divided
the electrodes into two groups to compare the effect of combining two
groups of electrodes within a brain vs. across two brains. This analysis
required an even number of total electrodes so that each group had
the same number of electrodes. Thus for this analysis, a subset of
sixteen out of the seventeen electrodes was chosen for a subsequent
analysis to compare within brain vs. across brain pattern classifier
performance. We then compared the improvement in the classifier's
performance discriminating car from face trials when combining the
neural activity from the two groups of eight electrodes within the
same brain vs. the two groups of electrodes across two different
brains. The procedure was repeated 100 times by randomly sampling
two brains and dividing the sixteen electrodes into two random
groups of eight electrodes.

Results

Behavioral and pattern classifier performance of individual observers

Perceptual performance (Area under the Receiver Operating
Curve) identifying the object in the images varied widely across
observers ranging from 0.581 to 0.893 (Fig. 1b). Fig. 1c shows the EEG
data aligned with respect to stimulus presentation and averaged
across all trials separately for cars and faces (event related potential,
ERP). The results show the typical negative-going deflection in the
ERP component differentiating responses to face stimuli relative to
other objects (i.e., cars) and peaking around 170 ms after stimulus
onset (Bentin et al., 1996; Itier and Taylor, 2004; Rousselet et al., 2008;
for more details on the N170 with and without external noise; Figure
S1.). To relate the neural activity to task performance we used the EEG
activity from each trial and multiple electrodes (see Materials and
methods). The classifier was trained using a 10 fold cross-validation
procedure to discriminate the neural activity evoked by faces and cars
from individual observers (Fig. 1d, right flow diagram) and resulted in
a decision variable for each trial that was used to make choices about
the image (car vs. face; Fig. 1b). Classifier performance operating on
observers' neural activity positively correlated with their behavioral
performance (r=0.751; pb0.01).

Pooling behavioral decisions across observers

To explore the benefits of collective wisdom in our task, we
aggregated observers' behavioral ratings across different size groups
(N=3, 5, 7, 9, 13, 15, 17, 19 and 20) using an optimal linear
combination (Duda et al., 2000). Because the impact of combining
ratings across a group of individuals will likely depend on the
particular individuals in the group, we repeated this and all analyses
using the ratings from four hundred random group configurations of
N individuals sampled from our list of twenty human observers.
Fig. 2b shows the typical improvement in proportion correct with
group size but less than that expected if observers were independent
detectors (see methods for mathematical details; Green and Swets,
1989). We also investigated a majority rule for which the group
decision corresponded to the choice selected by the greater
percentage of individuals. This simpler majority decision rule across
observers showed substantial benefits of combining behavioral
ratings across observers but was lower than the optimal linear
(Fig. 2b). Finally, a group decision rule that relied on the groups' most
extreme rating (see Materials and methods) results in much smaller
improvements with increasing number of individuals.

Pooling neural decision variables across multiple brains

To compare the benefits of aggregating behavioral ratings across
individuals to the combination of the neural activity across their
multiple brains, we first used the multivariate pattern classifier to
reduce the multi-electrode EEG activity (100–500 ms post stimulus)
of each individual and for each trial to a neural decision variable
(Fig. 2a). We then combined for each trial the neural decision
variables across brains using an optimal linear combination (see
Materials and methods). Fig. 2b shows that the performance
(proportion correct) after integration of the neural decision variables
across multiple brains increases with group size and parallels the
benefits of linearly combining the observers' behavioral ratings.
However, performance of the pattern classifier based on neural
activity is lower than that based on the behavioral ratings suggesting
that our method cannot recover from the EEG activity all of the task-
based information inherent in the behavioral ratings. To match the
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mean behavioral accuracy of a single observer, the neural classifier
required integrating EEG activity across seven brains. To evaluate a
neural majority and a neural most extreme opinion decision rules, we
determined for each individual a neural decision criterion that
maximized the probability of predicting their trial-by-trial decisions
(see Fig. 2b). The neural decision criterion allowed us to categorize the
neural decision variables into car and face decisions for each trial and
compute a majority decision (Fig. 2b).2 Use of the neural majority
decision rule required combining the EEG of nine brains to match
behavioral performance of the mean single observer.

A neural most extreme opinion decision rule was implemented by
making group choices for each trial solely based on the individual
whose neural decision variable was most distant from their own
neural decision criterion. To implement this, we quantified for each
trial and individual the neural decision variable's distance in standard
deviation units from the observers' neural decision criterion. We then
determined the trial group decision based on the individual with the
highest amplitude deviation from the decision criterion. The relation-
ship among the performances of the three neural decision rules is
similar to their relationship when applied to the observer ratings
(Fig. 2a). In particular, the neural majority rule was close to the linear
combination rule and the neural extreme opinion was highly
suboptimal.

Finally, we compared the result of integrating neural activity
across brains preceded by using the pattern classifiers on individual
brains to that of a more conventional methods common in the ERP
literature such as using a peak amplitude andmean amplitude around
the N170 component. For each observer we extracted for each trial the
peak and mean amplitude in a 40 ms window from the PO8 electrode
(see Materials and methods). The peak or mean amplitude for each
trial from multiple brains was then used as inputs to the optimal
linear and majority rules to combine mean/peak amplitudes across
observers. Fig. 2b shows that the performance achieved by combining
peak amplitudes of the N170 across observers using an optimal linear
rule is much lower than that achieved by first extracting from each
observer a neural decision variable from applying a pattern classifier
to a group of electrodes and all time-points. Results for the N170mean
amplitude and majority decision rule were similar or lower to the
N170 peak amplitude and are shown in Supplementary Figure S2.

Unique benefits of integrating information across multiple brains

Although the results in the previous section are consistentwith the
hypothesis that the classifier's benefit in performance with increasing
number of brains is associated with a property unique to combining
neural activity across different brains, it is also possible that it solely
reflects a simple increase on the available data size used for the
classifier irrespective of whether the data belongs to a single brain or
different brains. To test this alternative we divided the electrodes of
two individuals into random groups of eight electrodes. We then
compared the improvement in the classifier's (optimal linear)
performance discriminating car from face trials when combining the
neural activity from the two groups of eight electrodes within the
same brain (16 electrodes from one observer) vs. two groups of eight
electrodes across two different brains (8 electrodes from two
observers). If there is a unique benefit associated with integration of
information across two different brains, then the classifier's perfor-
mance should be higher when combining across the two groups of
electrodes from two different brains than when combining within
single brains. Because we want the result not to be dependent on the
particular two brains and two groups of electrodes selected, we
repeated the procedure 100 times by randomly sampling two brains
2 For the case of N=20 the ties ranged between 1 and 2% of the trials. Ties only
affected this one data point (N=20) and do not affect our main results (see Materials
and methods for handling of ties).
and dividing the sixteen electrodes into two random groups of eight
electrodes. The same procedure was implemented for various
combinations of number of electrodes and number of brains while
keeping the data size constant (total of 16 electrodes). Fig. 2c shows
that performance (Az) of the pattern classifier increases as it
integrates neural activity across larger number of different brains
(16 electrodes from 2 brains vs. 16 electrodes from a single brain;
pb0.05 with a correction for multiple comparisons). The result holds
for all time windows following 147 ms after stimulus presentation.
For comparison Fig. 2c also shows the performance improvement
resulting from using a larger number of electrodes from a single
observer (16 electrodes from a single brain vs. 8 electrodes from a
single brain).

Performance benefits from integrating neural decision variables in early
sensory vs. late decision stages

To assess whether integration across brains of neural activity
associated with the late decision component leads to greater
performance benefits than from combination of early sensory activity,
we measured accuracy (Az) after optimal linear pooling across brains
of neural decision variables for different temporal windows of 39 ms.
Fig. 3a shows accuracy improvements with number of brains (N=1,
3, and 20) as a function of time. With the EEG activity prior to the
presentation of the stimulus accuracy remains at chance (0.5), but
increases significantly starting with a temporal window of EEG
activity centered around 167 ms after stimulus onset (Fig. 3a). This
onset corresponds to the typical time window of the face-selective
N170 ERP component that has been tied to the perceptual coding of
faces (Bentin et al., 1996; Itier and Taylor, 2004; Rousselet et al.,
2008). The high accuracies persist all through 300–500 ms after
stimulus onset, a temporal epoch which has been related to decision
components (Philiastides and Sajda, 2006a). Critically, the perfor-
mance differences across varying number of brains integrated (N=1,
3, and 20) remain constant across the early sensory and late decision-
related EEG components (pN0.05).

Choice probabilities of groups for early sensory vs. late decision neural
activity

If behavioral decisions are governed by signals and noise at the late
decision stage we should expect that collective choice probabilities
associated with neural activity in the late component will be higher
than that related to the early sensory stages. Fig. 3b shows the choice
probability analysis for the various temporal epochs for the optimal
linear and majority pooling rules. The pattern of results is consistent
with the analysis quantifying the accuracy of the EEG predicting the
stimulus (Fig. 3a). Choice probabilities increased significantly above
chance starting with a temporal window of EEG activity centered
around 167 ms after stimulus onset. Importantly, the results show
that the choice probabilities predicting the decisions reached by
aggregating observer opinions (optimal linear or majority rule) are no
better for the neural activity associated with the late decision
component than for that associated with the early sensory stage.
Furthermore, the topographic layout of choice probabilities across
electrodes and time provides additional data. Although the spatial
localization of the neural activity is limited by the spatial resolution of
EEG and the inverse problem, the scalp topographies (Figs. 3c and d)
show highly significant choice probabilities over lateral occipital
cortex starting around the onset of the N170 ERP component with
more spatially distributed significant choice probabilities at later
times. As a final comparison, choice probabilities resulting from
using only the peak or mean amplitudes of the N170 of the PO8
electrode as inputs to the pattern classifier did not reach values higher
than 0.54±0.03.
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Spatiotemporal distribution of correlations between group behavioral
decision confidence/voting outcome and neural activity

If the measured neural decision variable reflects group evidence
for or against the presence of a car or face, we expect a significant
positive correlation between confidence ratings of the weighted
average of the observers' opinions and the multi-brain integrated
neural decision variable. Fig. 4a shows a scatter plot of the data and a
significant correlation (r=0.7; pb0.0001) between the optimal linear
combination of behavioral confidence ratings and that of the
integration of the neural decision variables of all twenty brains.
Similarly, although the majority rule does not provide an explicit
confidence rating for a decision one can interpret the voting outcome
as an expression of confidence (e.g., 90% agreement in a decision as
more confident than a decision with close to an even split across
voters). Fig. 4b shows a positive correlation between the voting
outcome obtained from the behavioral opinions and the votes
obtained using the neural decision variables from all twenty brains
(r=0.64; pb0.0001). For these analyses the neural decision variable
is integrated across the entire EEG time epochs.

Critical to one set of hypotheses tested in the present paper, if the
late decision component governs the formation of choices and
determines the decision confidence we might expect that decision
related neural activity (300 ms post stimulus onset) will be more
highly correlated with the pooled behavioral confidence than that
associated with sensory activity. However, the time course of the
correlation between the pooled behavioral confidence rating and
the pooled neural decision variables shows no higher correlations
for the late decision component than the early sensory activity. In fact,
the correlation peaks at 250 ms after stimulus onset (Fig. 4c). Finally,
the scalp topography of the correlations between behavioral pooled
confidence ratings and neural decision variables shows that statisti-
cally significant high correlations are localized at lateral occipital
electrodes starting at 200 ms after stimulus onset.

Incremental temporal integration of EEG activity and faster potential
decisions when combining neural decision variables across brains

Weevaluated the relationship between integration of neural activity
across multiple brains and the time-course of neural activity discrim-
inating the two perceptual stimuli. We first grouped for each observer
EEG time samples into bins of 10 ms (Fig. 5a) and trained a classifier to
maximally discriminate between the car and face stimuli. The neural
decision variables for each temporal bin were summed within an
integration window that was incrementally extended from 0 ms to
400 ms. The integrated neural decision variables were then combined
across multiple brains using an optimal linear combination or using a
majority rule. Fig. 5a plots accuracy of temporally integrated pattern
classifiers' neural decision variables as a function of aggregation across
varying number of brains. The results show that combining information
across a larger number of brains, either through a linear combination or
majority rule, can potentially allow the collective to make faster
decisions to achieve a specific accuracy. The measurements provide
estimates of relative benefits of combining information across brains vs.
those of decision time delays for an individual to temporally integrate
more neural information and achieve a higher behavioral accuracy.
For example, the measured neural decision variable of a single brain
reaches an average task accuracy of 0.56 at 220 ms. On average,
the combinedneural decision variables offivebrains reach that accuracy
in less than half the time: 80 ms. These time savings can be compared to
what might be theoretically expected if the noise in the EEG activity
were temporally independent samples allowing for larger performance
improvements through temporal integration of single brain activity
(Fig. 5b). Theoretical predictions were obtained assuming independent
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brain using a multivariate pattern classifier; b) two-variable histogram of voting results based on observers' behavioral ratings vs. voting results based on brain's neural decision
variables; c) correlation between pooled behavioral confidence ratings and neural decision variable using the human EEG data for different 39 mswindowswith varying time onsets;
d) topographic maps of correlation coefficients for different time points and electrode locations for linear and majority combination rules for groups of twenty observers (gray areas
correspond to correlation coefficients which were not statistically significant; pN0.05 with false discovery rate correction for multiple comparisons).
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zero mean noise and a fixed mean difference in EEG across car and face
stimuli starting at 70 ms. The mean difference in EEG across stimuli
types at the initial time-point was estimated from the first temporal
window in the data at which the average single brain pattern classifier
performancewas statistically above chance (seeMaterials andmethods
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Using neural activity to rank order groups of individuals based on the
accuracy of their decisions

Can brain activity of individuals be used to reliably identify which of
two unique groups would reach a more accurate decision through a
simple yet prevalent cooperative decision strategy such as the majority
vote? Fig. 6a shows the procedure of using collective neural decision
variables to rank order random groups of N observers based on the
performance achieved by aggregating their behavioral opinions. Fig. 6b
shows that using the groups' neuralmajority predictionswe can reliably
predict with an accuracy of up to 76% (n=3) which of two groups
would perform the best when aggregating their opinions using a voting
and majority scheme or a more complex linear combination. Similar
results can be obtained for different group sizes. The decreasing
accuracy in assessing which group would best perform the task as
group size increases is consistent with the concept that differences in
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Fig. 6. a) Procedure to evaluate the ability to use neural activity to predict which of two
mutually exclusive groups of different N observers would result in more accurate
decisions if their behavioral ratings were combined using a majority or a linear decision
rule; b) accuracy rank ordering aggregated behavioral opinions of two different groups
of N observers using their neural activity (collective neural decision variable). Figure
shows results for linear and majority pooling rules.
performance across groups diminish with increasing size due to a
regression towards the mean effect. For comparison, ranking of groups
based on combination of single trial N170 mean or peak amplitudes
resulted in much lower accuracies with maximum values of 0.543±
0.029 for theN170meanamplitude and0.542±0.024 for theN170peak
amplitude.

Discussion

Multi-brain computing and improved neural decoding of the state of the
world

Over the last decade there has been a dramatic increase in the
application of machine learning algorithms using multi-neuron
electrophysiology (Quiroga and Panzeri, 2009), functional magnetic
resonance imaging (Kay et al., 2008) and EEG (Philiastides and Sajda,
2006a) to read out information from brain activity about the state of
the world. Here, we extend these methods to demonstrate that there
is increased information about visual stimuli and an impending
decision inherent in multiple brains. We show that through multi-
brain computing a neural based classifier can reach a performance
level at discriminating visual stimuli at an earlier time than using the
EEG measurements from a single brain. For a given time-interval
integrating neural decision variables across brains leads to a much
higher performance identifying the visual stimuli than that achieved
with a single brain. An important aspect is that the benefits are not
just driven by data size. A control condition showed that, when
controlling for data size (total number of electrodes), combining
neural activity across different brains brings about unique benefits to
the pattern classifier performance. Importantly, our results show that
effective multi-brain computing relies in extracting individual neural
decision variables using a 1st stage multivariate pattern classifier
applied to each individual brain. More traditional schemes such as
extracting a single trial peak or mean amplitude around a component
for a single electrode leads to much poorer results.

Benefits of collective wisdom for perceptual decisions: sensory coding vs.
late decision

Improvement in the accuracy and time-efficiency of decisions
through collective collaboration is well documented for a variety of
animals ranging from bees to humans. For the case of perceptual
decisions, the benefits of aggregating individual opinions may come
from many sources. First, although all individuals within a species
share common sensory anatomy and neural architecture, their
different experiences during their lifespan might result in neural
mechanisms that use unique subsets of the perceptual information
present in the visual environment. Indeed, cell recordings in monkeys
have shown how learning modifies the neural activity in visual
sensory areas (Gilbert et al., 2001; Li et al., 2004b). Psychophysical
studies suggest that learning alters the image features on which
humans rely when making perceptual decisions (Li et al., 2004a; Gold
et al., 2004) and also that such features vary across human observers
(Abbey and Eckstein, 2006). Thus, the sensory mechanisms of
different individuals might encode distinct information about a
specific environmental event. Integration of neural activity and
perceptual judgments across observers might combine the various
sources of information represented in different brains leading to
better use of information and performance improvement. The inter-
observer variability in the coding of stimulus relevant information
could occur at the sensory stage but could also possibly occur at a later
decision stage. The dorsolateral prefrontal cortex (DLPFC) has been
identified as a locus of a domain general mechanism for perceptual
decisions that correlates with behavioral performance (Heekeren
et al., 2006; Heekeren et al., 2008). For example, there might be less
inter-observer variability in the information coded in the sensory



3 Note that using peak or mean amplitude of single trial EEG around the N170
component of a single electrode reached very low choice probabilities.
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stages but the later decision stages (e.g., DLPFC) might sample subsets
of the sensory information and lead to greater differences across
brains in the coded information. Second, brains are limited by
inherent noise at different sensory and decision stages of the
transduction of perceptual information that perturbs the neural
signals utilized for the decisions (Tolhurst et al., 1983). Thus,
aggregation of perceptual judgments across observers might reduce
the effects of neural noise resulting in performance benefits. A
dominant noise source at the decision stage might also predict greater
benefits of collective integration for the late decision component. This
is especially the case for perceptual tasks with external image
variability (luminance noise) and for which all observers view the
same samples of external luminance noise. For such cases, the
external noise imposes a correlation across observers' responses
diminishing the benefits of integrating information across observers.
A large late decision noise source, independent across observers,
would further decorrelate the observers' decision variables increasing
the gain of integration at decision stages relative to early sensory.
Unknown is which of these stages contributes the most towards the
benefits of collective perceptual decisions. Here, we compared the
performance benefits from integration of neural activity in late
decision vs. early sensory stages by analyzing temporal epochs and
electrodes of EEG activity. If a decision making mechanism integrates
subsets of sensory information in different and unique ways across
individuals giving rise to larger variability at the decision stage or if
the dominant noise was at the decision stage, then we would expect
that the benefits of integration of neural activity to be greater at the
decision stage than at the early sensory stage. Yet, our results do not
support this hypothesis. Instead, we show that there are no additional
benefits in the decision stage beyond what we measure in early
sensory activity. The results are consistent with the hypothesis that
the benefits of collective perceptual decisions might arise due to
variability in the coding of sensory information possibly due to both
sensory noise and differences in the subset of visual features utilized
by different individuals. It is difficult to pin-point from the present
results which visual features might be used by different observers but
two possibilities documented in the literature are variability across
observers in the use of shape-based features (Gold et al., 2000)
contributing to the face/car discrimination and variability in the
ability to optimally weight different spatial frequencies. For our
images with filtered noise the optimal strategy involves weighting the
spatial frequencies in the stimuli inversely to the noise power
spectrum resulting in down-weighting of lower frequencies relative
to high spatial frequencies. Ability to adjust the weighting of spatial
frequencies to non-white noise power spectra has been shown to vary
across human observers (Abbey and Eckstein, 2007).

The timing and electrode locus are consistent with the notion that
the benefits of aggregating observer opinions for our perceptual task
(faces vs. car) possibly arise in regions of the anterior fusiform gyrus
and lateral occipital cortex (LOC; Kanwisher and Yovel, 2006). The
results however are not inconsistent with the literature showing that
the DLPFC is a general purpose decision making mechanism which
correlates with behavioral performance and which computes a
decision variable using inputs from sensory areas (Heekeren et al.,
2008; Heekeren et al., 2006; Philiastides and Heekeren, 2009). Our
results might be well-explained if the multivariate pattern classifiers
are combining early sensory information in a similar manner to the
computations executed in the decision systems. What the present
results suggest is that there might not be any different stimulus
related information stemming from the integration of activity across
sensory areas in decision related areas nor is there late dominant
decision noise that governs behavioral choices and decision confi-
dence. Our analysis showing that choice probabilities and correlations
with confidence ratings and voting outcomes are as high for early
sensory activity as with late decision components is consistent with
this interpretation. One assumption in our interpretation is that task-
irrelevant noise does not entirely dominate task-related noise sources
in the EEG measurements. In a scenario in which task-irrelevant
measurement noise dominated the data then it would diminish our
ability to detect any additional performance improvements across
early and late processing stages as indexed by EEG. However, an
indication that the neural decision variable is not highly dominated by
measurement task-irrelevant noise is that the neural decision
variables are predictive of behavioral choices. In addition, we found
a slight advantage in the correlation with decision confidence of the
aggregated group opinions when using earlier EEG activity rather
than the later EEG activity, which presumably should not be observed
if our measurements were entirely dominated by task-irrelevant
noise.
Relationship between collective neural activity and behavioral decision
confidence

The early sensory neural activity is not only related to the binary
choices but also correlates with the voting outcome resulting from
aggregating observer ratings using a majority vote and the decision
confidence after linearly pooling the observers' opinions.3 A recent
study has shown how neurons in the parietal cortex, an area known to
be involved in decision making, represent the confidence associated
with a perceptual decision (Kiani and Shadlen, 2009). Our results
suggest that at least in the human brain, confidence of perceptual
decisions and the degree of agreement in a majority vote is not only
represented in late decision stages but also in early sensory areas. It is
possible that this correlationwith decision confidence in early sensory
areas might be stronger when the perceptual performance is limited
by the sensory data such as the noise in our images. However, even in
the presence of external noise, studies have shown that perceptual
performance is limited by an equally strong noise internal to the brain
(Burgess and Colborne, 1988). Thus, our results suggest that an
important component of the internal noise components must be
present in the early EEG components associated with sensory
processing.
Time-savings by integrating neural activity across brains

Our analyses also estimated the potential time-savings stemming
from integrating neural activity across multiple brains. Our results
reveal larger time-savings than we might theoretically expect when
integrating information across observers, which stems from the
higher correlations of neural activity across time within an observer
than across observers. If task relevant neural information was
temporally independent, observers could achieve the same perfor-
mance, as potentially achieved by a group, by shortly delaying their
decision and further temporally integrating neural activity. However,
the temporal correlations of neural activity require longer time delays
to match performance of the group and thus highlight the benefits of
collective integration (see Fig. 5a vs. 5b). This interpretation relies on
the assumption that the EEG measurement is not introducing the
temporal correlations and thus that the measured temporal correla-
tions reflect neural-based correlations.

Speeding decisions by collective pooling requires the animals to
have a time-efficient method to behaviorally access the information
and integrate it across group members. Indeed, many species
including honeybees choosing a new nest site, navigating birds and
fish use collective cognition resulting from fast and simple local
interactions among group members without complex resource
demanding collective behaviors (Couzin, 2009; Sumpter et al., 2008).
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Comparing group decision rules applied to neural decision variables and
behavioral opinions

We also evaluated a variety of decision rules for integrating neural
activity across human brains including an optimal linear, a majority
decision, and extreme opinion neural decision rule. Our results show
that arguably the most common decision rule in groups of all types of
species, the majority rule, benefits nearly as much as an optimal linear
rule from pooling task-relevant neural activity across brains. On the
other hand a neural decision rule that is based on the brain with most
extreme neural decision variable leads to highly suboptimal decision
accuracy. The general similarity in the relationship among the
behavioral decision rules and their neural analogs might seem
inevitable but this might not be necessarily the case. The relationship
between the decision rules depends on the correlation among the
observers' opinions, among neural decision variables and the
response distribution properties. In particular, we conducted simula-
tions creating N simulated observer decision variables per trial
(Gaussian random variables with equal d′ across observers) with
varying inter-observer correlation and reached group decisions using
the optimal linear and majority decisions (see Materials and
methods). The results confirm that the relationship between the
performances of the two decision rules depends on correlation across
observers (Fig. 7). As the correlation increases, the majority rule
becomes increasingly suboptimal relative to the optimal linear
combination (Fig. 7). In this context, our results suggest that the
correlation structure and distribution properties are at least coarsely
preserved across behavioral opinions and neural decision variables.
Moreover, despite its computational simplicity, the majority rule can
achieve surprisingly high levels of performance under uncertainty
(Quiroga and Panzeri, 2009) and is well-adapted to the variability in
inter-observer coding of task-relevant neural activity as assessed
through EEG. Others have argued that the majority rule is a robust,
simple, efficient social decision heuristic (Kameda et al., 2011) with
low computational cost.

Practical considerations, applications, and limitations of current study

Through multi-brain computing one might be able to develop a
neural-based classifier with performance that matches that of the
behavior of a single observer. Our results show that the neural
classifier required seven brains to achieve performance matched to
the mean behavior of a single observer. This result was based on all of
our twenty observers, some of which showed poor accuracies for the
individual neural classifiers. It is likely that some observers showing
consistent superior pattern classifier performance might be better
candidates for the EEG technology, and thus a neural-based classifier
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Fig. 7. Simulation evaluating group performance as a function of group size with increasing
the optimal linear decision rule (a) and the majority decision rule (b).
based on a select group might require fewer than seven brains to
match behavioral performance. The parallel extraction of information
from multiple brains allows significant time savings when compared
to single-observer EEG which might make the technology particularly
applicable for time-sensitive scenarios.

Our results also show that a majority decision rule based on the
neural activity of multiple brains can predict the majority decision
based on observers' behavioral responses, albeit not perfectly. While
encouraging, it is hard to envision scenarios for which the neural
voting would replace standard behavioral voting practices. For most
important group decisions ranging from judicial to medical decisions
there would be no rational reason to replace the behavioral decisions
for neural decision, especially, because we presently cannot predict
behavioral responses from neural activity without error. Thus, a
neural voting approach would perhaps be most appropriate for time-
pressured group decisions and scenarios in which humans are
engaged in some other motor activity. Neural emergency signals
computed in real-time from multiple brains might represent a robust
method to detect life-critical situations and even implement automated
shutting-off of hazardous machinery. For example, an emergency
situation signal computed via neural group decision from the brains of
multiple car drivers on a coincident geographic location on a freeway
could be one such scenario. A group neural emergency signal could
accelerate the deployment of emergency services to the location aswell
as serve as an input to trigger a response from a vehicle/s (e.g., brake).

Other applications of multi-brain computing include higher
performance for cortically coupled computer vision systems (Sajda
et al., 2010; Touryan et al., 2011) and assessments of collective
cognitive and emotional states to continuous dynamic stimuli and/or
environments. The technology would be limited by the potentially
extractable neural correlates of internal cognitive variables through
EEG; yet the multi-brain computing framework is potentially
applicable to other better measures of neural activity that might be
developed in the future.

Finally, the present paper did not compare a large variety of
machine learning algorithms and dimensionality reduction methods.
Here, we chose a simple set of linear classifiers due to their simplicity
and computational speed. Use of more sophisticated algorithms to
classify based on iterative optimizations (e.g., support vector
machine) or dimensionality reduction techniques (e.g., Independent
Component Analysis, ICA, Jung et al., 2001; Class-wise Principal
Component Analysis, CPCA, Das et al., 2007; Das et al., 2010) made
some of our sample intensive calculations hard to accomplish in a
timely manner. However, future research should concentrate on
assessing various algorithms and dimensionality reduction tech-
niques in analyzing the large volume of multi-brain data sets.
Arguably, the fact that we obtained the results even with simple
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linear classifiers is encouraging indicating that improved results
might be achieved with more sophisticated algorithms.

Acknowledgments

This work was first presented at the 2008 Society for Neuroscience
Meeting, Washington, D.C. (Eckstein et al., 2008). The project was
supported by Army grant W911NF-09-D-0001.

Appendix A. Supplementary data

Supplementary data to this article can be found online at doi:10.
1016/j.neuroimage.2011.07.009.

References

Abbey, C.K., Eckstein, M.P., 2006. Classification images for detection, contrast discrimina-
tion and identification tasks with a common ideal observer. Journal of Vision 6,
335–355.

Abbey, C.K., Eckstein, M.P., 2007. Classification images for simple detection and
discrimination tasks in correlated noise. Journal of the Optical Society of America. A
24, 110–124.

Bentin, S., Allison, T., Puce, A., Perez, E., McCarthy, G., 1996. Electrophysiological studies
of face perception in humans. Journal of Cognitive Neuroscience 8, 551–565.

Burgess, A.E., Colborne, B., 1988. Visual signal detection. IV. Observer inconsistency,.
Journal of the Optical Society of America. A 5, 617–627.

Conradt, L., List, C., 2009. Group decisions in humans and animals: a survey.
Philosophical Transactions of the Royal Society of London. Series B, Biological
Sciences 364, 719–742.

Conradt, L., Roper, T.J., 2009. Conflicts of interest and the evolution of decision sharing.
Philosophical Transactions of the Royal Society of London. Series B, Biological
Sciences 364, 807–819.

Couzin, I.D., 2009. Collective cognition in animal groups. Trends Cogn Science (Regul. Ed.)
13, 36–43.

Das, K., Osechinskiy, S., Nenadic, Z., 2007. A classwise PCA-based recognition of neural
data for braincomputer interfaces. Proc. of the 29th Ann. Int. Conf.of the IEEE Eng:
Med. and Biol. Soc. , pp. 6519–6522.

Das, K., Giesbrecht, B., Eckstein, M.P., 2010. Predicting variations of perceptual
performance across individuals from neural activity using pattern classifiers.
NeuroImage 51 (4), 1425–1437.

DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L., 1988. Comparing the areas under two
or more correlated receiver operating characteristic curves: a nonparametric
approach. Biometrics 44, 837–845.

Duda, R.O., Hart, P.E., Stork, D.G., 2000. Pattern Classification, 2nd ed. Wiley-Interscience.
Eckstein, M.P., Whiting, J.S., Thomas, J.P., 1996. Role of knowledge in human visual

temporal integration in spatiotemporal noise. Journal of the Optical Society of
America. A 13, 1960–1968.

Eckstein, M.P., Giesbrecht, B., Pham, B.T., Peterson, M.F., Abbey, C.K., Sy, J., 2008. Neural
basis of the benefits of group decisions. Program No. 519.2, 2008. Society for
Neuroscience, Washington, DC.

Galton, F., 1907. Vox populi. Nature 75, 450–451.
Gilbert, C.D., Sigman, M., Crist, R.E., 2001. The neural basis of perceptual learning.

Neuron 31, 681–697.
Gold, J.I., Shadlen, M.N., 2007. The neural basis of decision making. Annual Review of

Neuroscience 30, 535–574.
Gold, J.M., Murray, R.F., Bennett, P., Sekuler, A.B., 2000. Deriving behavioural receptive

fields for visually completed contours. Current Biology 10, 663–666.
Gold, J.M., Sekuler, A.B., Bennett, P.J., 2004. Characterizing perceptual learning with

external noise. Cognitive Science 28, 167–207.
Green, D.M., Swets, J.A., 1989. Signal Detection Theory and Psychophysics. Peninsula Pub.
Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tache, F., Said, I., Durier, V.,

Canonge, S., Ame, J.M., et al., 2007. Social integration of robots into groups of
cockroaches to control self-organized choices. Science 318, 1155–1158.

Hastie, R., Kameda, T., 2005. The robust beauty of majority rules in group decisions.
Psychological Review 112, 494–508.

Haynes, J.D., Rees, G., 2005. Predicting the orientation of invisible stimuli from activity
in human primary visual cortex. Nature Neuroscience 8, 686–691.

Heekeren, H.R., Marrett, S., Bandettini, P.A., Ungerleider, L.G., 2004. A general
mechanism for perceptual decision-making in the human brain. Nature 431
(7010), 859–861.

Heekeren, H.R., Marrett, S., Ruff, D.A., Bandettini, P.A., Ungerleider, L.G., 2006.
Involvement of human left dorsolateral prefrontal cortex in perceptual decision
making is independent of response modality. Proceedings of the National Academy
of Sciences 103, 10023–10028.

Heekeren, H.R., Marrett, S., Ungerleider, L., 2008. The neural systems that mediate
human perceptual decision making. Nature Reviews Neuroscience 9, 467–479.

Itier, R.J., Taylor, M.J., 2004. N170 or N1? Spatiotemporal differences between object
and face processing using ERPs. Cerebral Cortex 14, 132–142.

Jung, T.P., Makeig, S., McKeown, M.J., Bell, A.J., Lee, T.W., Sejnowski, T.J., 2001. Imaging
brain dynamics using Independent Component Analysis. IEEE Proceedings 88 (7),
1107–1122.

Kameda, T., Tsukasaki, T., Hastie, R., Berg, N., 2011. Democracy under uncertainty: the
wisdom of crowds and the free-rider problem in group decision making.
Psychological Reviews 118, 76.

Kamitani, Y., Tong, F., 2005. Decoding the visual and subjective contents of the human
brain. Nature Neuroscience 8, 679–685.

Kanwisher, N., Yovel, G., 2006. The fusiform face area: a cortical region specialized for
the perception of faces. Philosophical Transactions of the Royal Society of London.
Series B, Biological Sciences 361, 2109–2128.

Kay, K.N., Naselaris, T., Prenger, R.J., Gallant, J.L., 2008. Identifying natural images from
human brain activity. Nature 452, 352–355.

Kiani, R., Shadlen, M.N., 2009. Representation of confidence associated with a decision
by neurons in the parietal cortex. Science 324, 759.

Laughlin, P.R., Bonner, B.L., Miner, A.G., 2002. Groups perform better than the best
individuals on letters-to-numbers problems. Organizational Behavior and Human
Decision Processes 88, 605–620.

Li, R.W., Levi, D.M., Klein, S.A., 2004a. Perceptual learning improves efficiency by re-
tuning the decision ‘template’ for position discrimination. Nature Neuroscience 7,
178–183.

Li, W., Piëch, V., Gilbert, C.D., 2004b. Perceptual learning and top-down influences in
primary visual cortex. Nature Neuroscience 7, 651–657.

Luo, R.C., Kay, M.G., 1989. Multisensor integration and fusion in intelligent systems.
IEEE Transactions on Systems, Man, and Cybernetics 19, 901–931.

Parasuraman, R., 2003. Neuroergonomics: research and practice. Theoretical Issues in
Ergonomics Science 4, 5–20.

Neuroergonomics. In: Parasuraman, R., Rizzo, M. (Eds.), The Brain at Work. Oxford
University Press, 2007.

Parker, A.J., Newsome, W.T., 1998. Sense and the single neuron: probing the physiology
of perception. Annual Review of Neuroscience 21, 227–277.

Parra, L.C., Spence, C.D., Gerson, A.D., Sajda, P., 2005. Recipes for the linear analysis of
EEG. NeuroImage 28, 326–341.

Philiastides, M.G., Heekeren, H.R., 2009. Spatiotemporal characteristics of perceptual
decision making in the human brain. In: Dreher, J.-C., Tremblay, L. (Eds.), Handbook
of Reward and Decision Making. Elsevier. 2009.

Philiastides, M.G., Sajda, P., 2006a. Neural representation of task difficulty and decision
making during perceptual categorization: a timing diagram. Journal of Neurosci-
ence 26, 8965–8975.

Philiastides, M.G., Sajda, P., 2006b. Temporal characterization of the neural correlates of
perceptual decision making in the human brain. Cerebral Cortex 16, 509–518.

Quiroga, R.Q., Panzeri, S., 2009. Extracting information from neuronal populations:
information theory and decoding approaches. Nature Reviews Neuroscience 10,
173–185.

Rousselet, G.A., Husk, J.S., Bennett, P.J., Sekuler, A.B., 2008. Time course and robustness
of ERP object and face differences. Journal of Vision 8.

Sajda, P., Parra, L.C., Christoforou, C., Hanna, B., Bahlmann, C., Wang, J., Pohlmeyer, E.,
Dmochowski, J., Chang, S.-F., 2010. A blink of an eye and a switch of a transistor:
cortically-coupled computer vision: Proceedings of the IEEE, 98, p. 3.

Seeley, T.D., Buhrman, S.C., 1999. Group decision making in swarms of honey bees.
Behavioral Ecology and Sociobiology 45, 19–31.

Shah, S., Aggarwal, J., Eledath, J., 1997. Multisensor integration for scene classification:
an experiment in human form detection. ICIP, p. 199.

Simons, A.M., 2004. Many wrongs: the advantage of group navigation. Trends in
Ecology & Evolution 19, 453–455.

Sorkin, R.D., Dai, H., 1994. Signal detection analysis of the ideal group. Organizational
Behavior and Human Decision Processes 60, 1–13.

Sorkin, R.D., West, R., Robinson, D.E., 1998. Group performance depends on themajority
rule. Psychological Science 9, 456–463.

Sorkin, R.D., Hays, C.J., West, R., 2001. Signal-detection analysis of group decision
making. Psychological Review 108, 183–203.

Sumpter, D.J., Krause, J., James, R., Couzin, I.D., Ward, A.J., 2008. Consensus decision
making by fish. Current Biology 18, 1773–1777.

Surowiecki, J., 2005. The Wisdom of Crowds. Random House, Inc.
Tolhurst, D.J., Movshon, J.A., Dean, A.F., 1983. The statistical reliability of signals in

single neurons in cat and monkey visual cortex. Vision Research 23, 775–785.
Touryan, J., Gibson, L., Horne, J.H., Weber, P., 2011. Frontiers: real-time measurement of

face recognition in rapid serial visual presentation. Frontiers in Perception Science
2, 1–8.

Troje, N., Bülthoff, H.H., 1996. Face recognition under varying poses: the role of texture
and shape. Vis Research 36, 1761–1771.


