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 i  g  h  l  i  g  h  t  s

We  introduce  BICAR,  a  new  algorithm  for  subject-level  EEG-fMRI  data  fusion.
BICAR  ranks  each  joint  source  by  a task-independent  measure  of reproducibility.
We  derive  an analytical  reproducibility  cutoff  below  which  components  are  discarded.
We  apply  BICAR  to human  subjects  performing  a  visual  search  task.
Among  the  most  reproducible  sources  are  visual,  motor,  and attentional  components.
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a  b  s  t  r  a  c  t

We  introduce  BICAR,  an algorithm  for  obtaining  robust,  reproducible  pairs  of  temporal  and  spatial  com-
ponents  at the individual  subject  level  from  concurrent  electroencephalographic  and  functional  magnetic
resonance  imaging  data. BICAR  assigns  a task-independent  measure  of  component  quality,  reproducibil-
ity,  to each  paired  source.  Under  BICAR  a reproducibility  cutoff  is derived  that  can  be  used to  objectively
discard  spuriously  paired  EEG-fMRI  components.  BICAR  is  run on  minimally  processed  data:  fMRI  images
undergo  the  standard  preprocessing  steps  (alignment,  motion  correction,  etc.)  and  EEG data,  after  scan-
MRI
oncurrent EEG-fMRI
ultimodal data fusion

ndependent component analysis

ner artifact  removal,  are  simply  bandpass  filtered.  This  minimal  processing  allows  the  secondary  scoring
of  the same  set  of BICAR components  for  a  variety  of  different  endpoint  analyses;  in  this  manuscript
we  propose  a  general  method  for  scoring  components  for  task  event  synchronization  (evoked  response
analysis),  but  scoring  using  many  other  criteria, for example  frequency  content,  are  possible.  BICAR  is
applied  to  five  subjects  performing  a  visual  search  task,  and  among  the most  reproducible  components
we  find  biologically  relevant  paired  sources  involved  in  visual  processing,  motor  planning,  execution,

and  attention.

. Introduction

Concurrent surface electroencephalography and whole-brain
unctional magnetic resonance imaging (EEG-fMRI) hold tremen-

ous promise for obtaining non-invasive high spatiotemporal
esolution measurements of human brain dynamics (Debener et al.,
006). Multiple studies support the idea that EEG sources and fMRI
ctivations in healthy subjects can colocalize (Christmann et al.,

∗ Corresponding author at: 1080 Shennecossett Road, Groton, CT 06340-6040,
SA. Tel.: +1 860 405 9136.

E-mail address: kevin.s.brown@uconn.edu (K.S. Brown).
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2007; Whittingstall et al., 2007; Roberts et al., 2008; Esposito et al.,
2009; Dubois et al., 2012; Logothetis et al., 2001). In addition, in
certain patient populations, especially epileptics being considered
for surgical therapy, EEG-fMRI is emerging as a promising alter-
native to invasive corticography (Rosenkranz and Lemieux, 2010).
The most compelling reason for fusing EEG and fMRI is that they
are complementary. Trying to infer the locations of cortical sources
from EEG data alone is a highly underdetermined inverse problem

which will not yield a unique solution without employing ad hoc
constraints on solution norm or smoothness (Sekihara et al., 2001;
Pascual-Marqui et al., 1994; Hämäläinen and Ilmoniemi, 1994).
Conversely, even if major advances in pulse-sequence technology
could vastly shorten MRI  acquisition times (Lustig et al., 2007;
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andès and Wakin, 2008; Jung et al., 2009; Jeromin et al., 2012),
MRI is fundamentally a slow metabolic/hemodynamic measure-

ent that cannot yield the kind of time resolution obtainable from
lectrodynamic measurements.

Despite a general belief that EEG-fMRI is better than either
easurement on its own, general methods for combining these

ata of vastly different spatial and temporal resolution are lack-
ng (Chaudhary et al., 2011). Some existing methods make heavy
rade-offs for or against spatial or temporal resolution, for example
n the case of fMRI event (Grouiller et al., 2011; Mulert et al., 2002;

u et al., 2010; Yuah et al., 2012) and EEG source (Babiloni et al.,
002; Liu et al., 2006; Strobel et al., 2008) weighting. Other meth-
ds build specialized solutions geared towards obtaining a solution
seful for analysis in frequency space, as is the case for wavelets
Schultze-Kraft et al., 2011) or partial least squares (Martinez-

ontes et al., 2004). A variety of other methods based on response
unctions (Sato et al., 2010), mutual information (Ostwald et al.,
010, 2012), or variational Bayesian approximations (Daunizeau
t al., 2007) have been proposed, but typically time locking to

 behavioral event of interest is essential for obtaining a solu-
ion.

Joint estimations aim to take a symmetric approach to inte-
rating EEG-fMRI data sets; the most straightforward way  to do
his is with Independent Component Analysis (ICA) (Moosmann
t al., 2008). EEG is modeled using temporal ICA (Makeig et al.,
996) and fMRI via spatial ICA (McKeown et al., 1998). These
pproaches have the advantage of requiring no source localization
odel, though one could be used if desired (Brookings et al., 2009;

rown et al., 2010). Joint estimations typically have the disadvan-
age of relying heavily on the task structure and/or rather arbitrary
rocessing/reshaping of the data matrices to obtain conformable
imensions across subjects or modalities.

It is extremely challenging to establish reliable and unbiased
ethods to match ICA components systematically. This is a dif-

cult problem even when considering a single imaging modality,
.g. selection of spatial fMRI sources alone. One solution is to match
omponents at a population level by finding components that are
onsistent across subjects (Eichele et al., 2008). However, in order
o be diagnostically important, a solution must be obtainable at
he individual subject level. Another promising approach to the
roblem of unbiased component selection for single data modal-

ties is given by the RAICAR algorithm (Yang et al., 2008), which
ses a repeated estimations technique to assess the robustness of
omponents. Each component is given a task-independent measure
f component quality: the reproducibility. This value is calculated
y performing stochastic ICA many times on the same dataset and
hen matching components across realizations. Components which
epeatedly occur in many realizations are more reproducible and
ence more trustworthy. However, RAICAR is limited to use on sin-
le modalities and therefore not suitable for joint EEG-fMRI data
ining.
Motivated by the strategy of RAICAR, we recently developed

ICAR: a general-purpose data-driven method for obtaining robust,
eproducible pairs of temporal and spatial components from com-
lementary spatiotemporal data matrices (Brown et al., 2012). In
hat paper the algorithm is applied to many different types of data,
emonstrating the general applicability of BICAR for spatiotempo-
al data fusion. In this manuscript, the extension and application of
ICAR to event-related analysis of EEG-fMRI data as a specific appli-
ation is introduced. To apply BICAR to EEG-fMRI data, a number of
ignificant modifications and improvements were necessary. BICAR

ollows RAICAR (Yang et al., 2008) in assigning an experiment-
ndependent measure of component quality (reproducibility), but
oes beyond RAICAR in several ways, most notably in the appli-
ation to joint EEG-fMRI data. BICAR has five key advantages over
xisting methods applied to this problem:
e Methods 219 (2013) 205– 219

Objectivity:  In BICAR one can analytically calculate a data- and
algorithm-dependent reproducibility cutoff below which a sub-
ject’s components should be deemed insignificant; this cutoff is
derived in this manuscript. This entirely removes the subjectivity
that accompanies many ICA analyses, in which components are
selected by eye using prior anatomical or task information.
Flexibility:  Only scanner acquisition times and data sampling rates
are used in BICAR; no information about the task or paradigm is
required. BICAR is run on the preprocessed data, with no epoching,
calculation of t-maps, etc. This allows the same set of BICAR
components to be used for multiple endpoint analyses: evoked
responses, frequency content, spatial priors, etc. This is a crucial
point; while we  consider event-related analysis in this manuscript,
that choice is made after BICAR is run on the data. BICAR itself
remains completely ignorant of the task events in the experiment.
Extensibility: BICAR is not a source localization method, but results
from BICAR could be directly used in source localization studies:
highly reproducible components could be used as basis functions
in a joint inversion approach (Brookings et al., 2009; Brown et al.,
2010).
Specificity:  BICAR produces joint components at the individual
subject level. This allows the discovery of both subject-common
and subject-unique dynamics, which could be important for
understanding behavioral variability (Miller et al., 2002, 2011).
Methods like group ICA (Calhoun et al., 2001) which begin at
the population level only reveal activity common to the entire
population.
Symmetry:  Unlike event or source weighting methods, BICAR
treats the two data sources on identical footing by taking the
best resolved dimension of each: time from EEG and space from
fMRI. In addition, it is possible to adjust the relative weighting
between the two  data sources to accentuate temporal or spatial
information.

In what follows, the BICAR algorithm is discussed in the context
of application to EEG-fMRI data (see Section 2). Full details on the
algorithm and its performance on a variety of test data are avail-
able elsewhere (Brown et al., 2012). Here we  introduce for the first
time a general method for scoring BICAR components for significant
association with task events; this allows selection of BICAR com-
ponents which are both reproducible and significantly associated
with a set of task events of interest.

Not only can BICAR assign a reproducibility value to each
joint source, but it is also possible to calculate a reproducibil-
ity cutoff below which BICAR components are deemed to be
spuriously paired and should be ignored. This derivation is
discussed in detail in this manuscript, and is an important
advance. Simply ranking the components by reproducibility gives
one an order for consideration (most reproducible first), but
offers no guidance as to which joint components to neglect for
further analysis. The reproducibility cutoff provides this guid-
ance.

In this manuscript, BICAR is applied to a set of healthy par-
ticipants with normal attention performing a visual search task.
BICAR is able to find biologically relevant paired sources involved in
visual processing, motor planning, execution, and attention, which
are highly reproducible and present in multiple subjects. In these
examples, we  focus on finding components that are relevant for an
event related experimental design for individual subjects and not
to perform a large sample, group analysis. It should be stressed that

this is only one application. Other scoring criteria, such as frequency
analysis, can be applied to the same set of BICAR components after
the algorithm is used. BICAR only needs to be repeated if the EEG or
fMRI data itself changes, for example because of different choices
in image preprocessing.
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Fig. 1. Single target-search task used in this study. After presentation of a fixation
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ross, a field of “L”s is presented along with one rotated “T”, in one of two  possible
rientations. Subjects search the visual field until they find the “T”, reporting on its
rientation via a button press. Search fields were either from a small item set (six
tems total) or a large item set (twelve items total).

. Methods

.1. Experimental design

.1.1. Participants
Five study participants (four female, one male) performed a

hallenging visual search task during a two hour simultaneous
EG-fMRI experiment at the University of California, Santa Barbara
rain Imaging Center. All of them self-reported as right handed,
nd ranged in age from 20 to 30 years. All volunteers had normal or
orrected-to-normal visual acuity. Prior to participation, volunteers
rovided written informed consent that had been approved by the
thical Committee of the University of California, Santa Barbara.

.1.2. Task and procedure
The orientation task we used is one that is commonly used in

isual search tasks (Chun and Jiang, 1998; Johnson et al., 2007;
iesbrecht et al., 2013). The search field consisted of rotated colored

L’ distractors and a single rotated ‘T’ target (see Fig. 1). The item
ocation for each array was randomly sampled from a grid of six-
een possible locations with the constraint that across all trials the
arget was equally likely to be in any of these locations. Each trial
ould be either a small set size (six items) or a large set size (twelve
tems), as well as either ‘repeated’ (identical array of search items
o one seen previously) or ‘novel’ (random layout of search items).
or repeated displays, the distractor locations and identities were
eld constant, but the target was rotated 90◦ to the left or 90◦ to the
ight (equal numbers of trials). In order to facilitate the contextual
ueing effect participants were instructed to adopt a passive search
trategy (Lleras and Von Mühlenen, 2004). For the analysis in this
anuscript, we aggregate across all target presentations and call

hem all “stimuli”.
The search task procedure was as follows. Each trial started with

 central fixation to be maintained at all times. After 250 ms  of fixa-
ion, a search array was displayed until either the subject responded
r 1900 ms  elapsed. The subject had to indicate whether the target

T’ was rotated to the left or right by pressing one of two buttons
s quickly as possible. Responses were made with the right hand
sing a button box. After response, auditory feedback was  given

o indicate whether the answer was correct (high pitched beep) or
ncorrect (buzzer). In this article we discard all incorrect responses

hen studying the “response” category.
Each trial lasted a total of three seconds. A total of eight blocks

f trials were used for each subject, with each block consisting
e Methods 219 (2013) 205– 219 207

of eight small and eight large displays repeated twice for a total
of 256 experimental trials. In addition, approximately 85 blank
trials (one third of 256) were included in each block to intro-
duce temporal jitter into the paradigm. During the blank trials,
no target/distractor field was presented; the fixation cross simply
remained on the screen. Importantly, the orientation of the target
(left or right with respect to an upright ‘T’) was completely coun-
terbalanced and randomized so that in each block, every display
(regardless of whether it was ‘novel’ or ‘repeated’) was presented
twice, once with the target rotated left and once with the target
rotated right. The ‘repeated’ and ‘novel’ aspects refer only to config-
uration of the target and distractor encountered previously. Across
blocks, new displays consisting of unique target/distractor spatial
configurations were created for the ‘novel’ condition and the orig-
inal configurations from the ‘repeated’ condition were again used
twice per block, once for each orientation. This counterbalancing
and randomization procedure removes any motor biases associ-
ated with a particular display and ensures that the task (orientation
discrimination) is orthogonal to the spatial configuration manipu-
lation (‘novel’ vs. ‘repeated’).

In order to avoid removing task-relevant signal from concur-
rently recorded EEG during MR artifact correction, the search array
presentations were not explicitly tied to a TR onset (Allen et al.,
2000). Instead, the initial search array was presented following the
first TR after a random delay. This delay and the three-second trial
length avoided regular synchronization with the two second TR.

2.1.3. Data collection and preprocessing
All data was  collected at the UCSB Brain Imaging Center.
Electroencephalographic data was  acquired simultaneously

with fMRI data using an MR-compatible 64 channel EEG system
(www.brainproducts.com). Eight five-minute sessions of EEG-fMRI
data were collected for each subject. The data was  acquired at
1000 Hz and re-referenced offline to an average of electrodes
TP9 and TP10 (near mastoids). MR  gradient switching artifacts
were removed via BrainVision Analyzer software version 2.0
(www.brainproducts.com); the correction process creates an arti-
fact template for each TR based on scanner triggers, and this
template is subtracted from the raw EEG data (Allen et al., 2000).
Following this correction, the data was downsampled to 250 Hz.

The ballistocardiogram artifact was  removed via Niazy’s OBS
method (Niazy et al., 2005), using the FMRIB plugin for EEGLab
(sccn.ucsb.edu/eeglab). After BCG correction the ECG electrode
was discarded. Each electrode in each imaging session was  band
pass filtered between 0.1 and 30 Hz, downsampled to 62.5 Hz, and
linearly detrended before concatenation. This resulted in a two-
dimensional array of size number of electrodes (nE) by number of
EEG samples (tE).

A 3T TIM TRIO Siemens Magnetom scanner with a 12-channel
phased-array head coil was used for MRI  data collection. The func-
tional data were acquired using a T2*-weighted gradient-echo
sequence with a repetition time (TR) of 2 s, echo time (TE) of
30 ms,  and flip angle (FA) of 90◦, resulting in 56 contiguous slices at
3 mm  × 3 mm × 3.5 mm voxel resolution. For anatomical data, a T1-
weighted MPRAGE sequence with 1 mm  isometric voxel resolution
was used.

fMRI data were preprocessed using SPM 5.0
(www.fil.ion.ucl.ac.uk/spm) (Friston et al., 1995). fMRI image
volumes were slice time corrected, motion corrected, unwarped,
spatially normalized to the Montreal 152 Average T1 atlas, and
resliced to 4 mm × 4 mm × 4 mm voxel sizes. No smoothing was

performed on the fMRI images. Each voxel in each imaging session
was linearly detrended and the sessions were concatenated; these
steps occurred after all SPM preprocessing steps. The high resolu-
tion T1 anatomical MRI  was  segmented into gray and white matter,
warped to the 152 T1 atlas, and resliced to 4 mm × 4 mm × 4 mm
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ig. 2. Schematic for the BICAR algorithm. BICAR proceeds first by K-fold FastICA d
ources. Then sources are paired using a transfer function between the EEG and fM
earched and aligned via absolute correlation; this results in nS groups of paired sou
re  then averaged with weighting to obtain one set of nS paired BICAR sources and 

oxel sizes. The combined gray and white matter images were
sed as masks for each subject to remove non-brain voxels before
ession concatenation and reshaping into a two-dimensional array
f the number of scans (tF) by the number of voxels (nV). This
rocess was replicated for all five subjects.

For two of the five subjects, one of the eight sessions had to
e discarded as there were errors in the time stamps needed to
ake a correspondence between the EEG record and fMRI volume

cquisition times within the five-minute session. For these two  sub-
ects, the other seven sessions were used. For the remaining three
ubjects all eight recording sessions were usable.

.2. BICAR

.2.1. Algorithm
The steps of the BICAR algorithm (Brown et al., 2012) are

iscussed here in order to highlight particulars of applying it to
EG-fMRI data. Fig. 2 gives an algorithm schematic. In Fig. 2A K-fold
astICA (Hyvärinen and Oja, 1997) decomposition is performed on
oth the EEG data matrix (size nE × tE) and the fMRI data matrix
size tF × nV). By K-fold FastICA we mean the following. Each data

atrix (E and B in Fig. 2) is unmixed via FastICA with a different
andom initial condition; we refer to a single pair of FastICA
ompositions as a realization.  The initial unmixing matrix for each
ecomposition is a matrix of Gaussian distributed random numbers
ith mean zero and unit variance of the appropriate size (nE × nS

or E, tF × nS for B). This matrix is orthogonalized in at the start of
he FastICA algorithm. Temporal ICA is used on the EEG matrix and
patial ICA on the fMRI data matrix; the fMRI data matrix has been

ransposed in Fig. 2A so that time (scans) is the row dimension, as
s appropriate for spatial ICA. All initial conditions – both for dif-
erent values of K and for spatial and temporal ICA within a single
ealization – are independent. K = 30 was used for this study. Both
pplications of ICA in each realization extract nS sources; for all
position of the EEG and fMRI data matrices E and B ; nS is the number of extracted
namics. The cross-realization correlation matrices between the paired sources are
ach of which consists of one source from each of the K ICA realizations. Components
ated mixing matrices. See Section 2 for details on these steps.

analyses in this paper, nS = 63, representing a full-rank decompo-
sition of the EEG data matrix E. Hence in what follows nS = nE = 63
in Fig. 2, though this is not generally required (see below for
additional information on this point). Each ICA decomposition for
each dataset produces both nS sources and nS mixing elements. For
the EEG data, the sources are time series and the mixing elements
are typically called scalp maps. For the fMRI data, the sources are
image volumes and the mixing elements are time series.

After decomposition, EEG sources are matched to the fMRI
sources (Fig. 2B). This matching step is performed by pairing
transformed, decimated EEG sources (time series) with fMRI mix-
ing elements (also time series) via absolute Pearson correlation.
Sources are paired one-to-one. One-to-many matching is also pos-
sible, but our previous work has considered only one-to-one source
matching (Brown et al., 2012). In order to carry out the match-
ing step, a transfer function between the EEG and fMRI dynamics
needs to be specified. We  have shown elsewhere via simulation
that BICAR is relatively robust to transfer function misspecification
(Brown et al., 2012); in addition, it is possible to optimize the trans-
fer function from within BICAR itself, a subject for a future study.
For the transfer function a simple parameterized function of the
type often assumed for the hemodynamic response function (HRF)
in fMRI research was employed. This is a single non-delayed gamma
of the form

h(t, {˛, �}) =
(

t

�

)˛ e−t/�

��(  ̨ + 1)
, (1)

which basically acts as a delayed low pass filter. The parameter
values used were  ̨ = 8.6, � = 0.55, resulting in a peak location of
4.73 s. After transformation by the HRF and before the correla-

tion calculations, the transformed EEG sources were decimated
to establish temporal correspondence with the fMRI scans. Cor-
relation matching proceeds as follows and occurs independently
in each realization. The source pair in each realization with the
largest absolute transformed EEG source/fMRI loading correlation
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re associated and removed from the pool of potential matches.
his process is then repeated, in this case 62 additional times, to
ield nS = 63 paired sources in each of the K = 30 ICA realizations.

The paired sources are then aligned across realizations (Fig. 2C).
his process is rather complicated and the details for both RAICAR
Yang et al., 2008) and BICAR (Brown et al., 2012) can be found
lsewhere. The goal can be understood as follows. The ordering
f the nS paired sources in each of the K realizations is arbitrary.
ence, even if an identical set of paired sources was found in each

ealization, we still must construct a consistent ordering in each
ealization so that similar sources can be grouped. Therefore, we
se a realization-realization cross-correlation technique in order
o compute an optimal ordering. We  then construct each of the nS
ICAR sources as a weighted average of K sources, one instance from
ach of the ordered K realizations, with the weighting factors rep-
esenting the averaged pairwise reproducibility of sources across
he K estimates. For example, in the case of identical sources in each
ealization (rarely achieved in practice), all the weights would be
nity.

After this process of weighted averaging one BICAR decom-
osition has the same shape as two regular ICA decompositions
one temporal, one spatial) concatenated; the BICAR source

atrix will be of dimensions nS × tE + nV (number of extracted
ources × number of EEG samples + number of fMRI voxels) and
he BICAR mixing matrix of dimensions nE + tF × nS (number of
EG electrodes + number of fMRI scans × number of extracted
ources). In practice, all the matrices are kept separate for compu-
ational efficiency. However, it is useful to think this way because
lignment is driven by both temporal (from EEG sources) and
patial (from fMRI sources) information; highly similar groups
f sources are similar in both time and space. Once BICAR has
een run, the temporal and spatial parts of the BICAR sources are
eparated and related to anatomical and other experimental infor-
ation.
Before source averaging and reproducibility calculation, one

ust deal with a sign problem. In both the EEG and fMRI cases,
CA produces a set of sources and mixing elements that reconstruct
he corresponding data matrix. However, one can easily change the
ign of any number of sources along with the signs of the corre-
ponding columns of the mixing matrix and the data matrix will
emain invariant. Since we have used absolute Pearson correla-
ion for similarity calculations, sources in one realization may  be
ligned with their sign-reversed version in another. Hence a proce-
ure is employed to fix the signs of each aligned component; this

s accomplished by arbitrarily assigning one source in each group
o have the “canonical” sign, and then computing signed correla-
ions of that source with all others in the group. Any source having

 negative correlation with the canonical source is multiplied by
inus one; the corresponding mixing column also obtains a sign

hange.
Once alignment and sign canonicalization are finished the

eighted averages are constructed. For each of the nS aligned BICAR
ources, we compute the K × K set of estimate-estimate absolute
ross-correlations. There are K(K − 1)/2 unique such correlations,
ccounting for the symmetry of the cross-correlations and ignor-
ng autocorrelation. We  define the reproducibility of a BICAR source
nd its corresponding mixing elements as the average of these
nique correlations. The weight for each of the K estimates in
onstructing the BICAR source is given by the average of the pair-
ise absolute cross-correlations of that estimate with all other

stimates. These definitions place reproducibility in [0, 1]. Contrib-

tions to the reproducibility come from both time (EEG sources)
nd space (fMRI sources). Matching, sign canonicalization, source
veraging, and reproducibility are either not present in, or quite dif-
erent from, the RAICAR algorithm (Yang et al., 2008; Brown et al.,
012).
e Methods 219 (2013) 205– 219 209

The choice of 63 sources – a full-rank decomposition of the EEG
data – is motivated by previous work (Brown et al., 2012). By using
BICAR on synthetic data of known source content, we investigated
the result of source overextraction from the temporal data. Specifi-
cally, ten sources were extracted from a mixture containing only
five true sources. In all cases, BICAR source reproducibility was
correlated with BICAR source similarity to a true source, and the
spurious sources migrated to the tail of the reproducibility distri-
bution. This was true even in low signal-to-noise scenarios; in fact,
in cases of high signal-to-noise the shape of the BICAR source repro-
ducibility spectrum (see Fig. 3 for an example) could be used to
estimate the number of true sources in the data. In these low noise
cases, the sorted reproducibility values drop sharply between the
last true source and the first spurious source (sources five and six in
the synthetic example). Given that we do not know the true number
of sources in the real neuroimaging data, this previous result gives
us confidence that overextraction is safer than underextraction, in
which we  might not capture all the true neural sources.

2.2.2. Component display
Figs. 4–6 show BICAR components from the subjects in this

study. Common display conventions for the BICAR components are
as follows. In every case, for sources which are significantly task-
associated, the temporal portion of the BICAR source is shown as
a stacked plot of individual trials (as a raster) and trial average (as
a line plot). No information about the temporal source is shown
for nonsynchronized components. For both synchronized and non-
synchronized components, representative slices are shown for the
spatial sources. More specific information follows:

Temporal: Time windows of extracted signals for the stimulus and
response categories were (−0.24 s, 0.64 s) and (−0.72 s, 0.24 s),
respectively, where the event of interest (search field presenta-
tion or button press) occurred at 0 s. For components which are
synchronized to both categories, rasters and event average plots
are shown separately for both event types (stimuli and responses).
All extracted windows were baselined using the pre-event inter-
val. Each raster has been transformed with a nonlinear (hyperbolic
tangent) contrast adjustment for easier viewing; this transforma-
tion is for visualization only and was  not used in calculation of
event synchronization or the trial means. Shaded gray areas in the
trial average plots are envelopes representing two standard errors
of the mean, and the event onset (t = 0) is marked with a vertical
dotted line in each signal average plot. The y-axis units in the sig-
nal average plot are arbitrary; each signal has been standardized
before display. A colormap in which green is more positive and red
more negative has been employed, but the overall sign of the com-
ponent is essentially arbitrary – it is jointly carried by the source
and the mixing elements (not shown).
Spatial:  Each spatial source is shown as a series of representa-
tive slices, superimposed on that subject’s anatomy. In each figure
showing BICAR components (Figs. 4–6), the set of slices is always
the same. They are numbers 35, 38, 41, 44, and 47. This is noted
on the first BICAR source in each figure (top left); the numbering
is suppressed elsewhere due to space constraints. BICAR spatial
sources have been standardized before display. All spatial sources
have been smoothed with an isotropic Gaussian filter with a half-
width of 4 mm  (1 voxel); as detailed in Experimental Design, no
smoothing was performed on the fMRI images themselves. In addi-

tion, voxels with absolute intensity less than a chosen threshold
of 0.25 have been suppressed. The same red/green colormap used
for the temporal rasters has been used for the spatial sources,
but again the sign of the component is essentially arbitrary – it is
jointly carried by the source and the mixing elements (not shown).
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Fig. 3. Sample reproducibility spectrum with schematics for scoring. BICAR itself, via physical matching, gives each resulting component a reproducibility value (the y-axis
in  the central plot). The dotted line shows a sample reproducibility cutoff Rc , whose derivation is given in Section 3 and Appendix A. Filling the symbols in the central plot
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ndicates  significant task-association with one or both categories (all Stimuli, all R
etermined by comparing intertrial similarity when epoching to the real event loca
ime  by a uniform random number in (−500 ms,  500 ms). See Section 3 for addition

.3. Ranking components for task-relevance

BICAR run on each subject produces nS joint components, each
ith an associated reproducibility value R ∈ [0, 1]. The components

an then be secondarily scored on other criteria of interest. In this
tudy only secondary scoring for phase synchronization to task
vents (i.e., evoked response analysis) is considered. Scores for task
ynchronization are obtained as follows. The EEG portion of the
ICAR component is epoched separately with respect to each task
vent category of interest; for the analysis in this paper there are
wo categories of interest, all stimuli (search field presentations)
nd correct responses. The Ni trials from each category i are used
o compute average inter-trial similarities for each component as
ollows. Computing the Ni × Ni correlation matrix C(i), we  compute

 synchronization index for component c and category i

c(i) = 1
Ni(Ni − 1)

∑
k /=  l

C2
kl(i) (2)

hich sums the squares of the unique trial-to-trial cross correla-
ions. The sum is restricted to off-diagonal terms, and the prefactor
orrects for double counting the upper triangle and its counterpart
eflected across the diagonal.

In this study each component has two values for s, correspond-
ng to the categories chosen for analysis.1 To determine whether
hese synchronization values are statistically significant, s in Eq.

2) is recomputed for sets of permuted stimuli in each category.
or each category (all stimuli, all correct responses) a set of per-
uted task events is created in which the true trigger locations are
oved in time by uniform random numbers in (−500 ms,  500 ms).

1 There are two categories of interest in this study, but this process generalizes to
ny  number of categories.
ses, or Both), with category indicated by color. Significance for task association is
versus a distribution of scrambled locations, in which each real trigger is moved in
ails on these calculations.

These jitter times will be experiment-dependent, but the scoring
method is not. These permuted trigger sets preserve the number
of stimuli but onsets are shifted with respect to the true values
in the experiment. For each permuted task sc(i) is recomputed for
all components c. This process is replicated 100 times to obtain a
category-specific distribution for sc(i). This distribution is then used
to standardize the observed true s values, and the resulting stan-
dardized scores converted to p-values. A false discovery rate (FDR)
correction (Benjamini and Hochberg, 1995) is applied to account
for multiple hypothesis testing, and the calculated p-values com-
pared to the FDR-corrected cutoffs for significance. In general, at
the end of this process each component will be significantly asso-
ciated with zero or more categories: for the subsequent analysis
in this manuscript, that means stimuli, responses, both, or neither.
The p-value threshold was  0.05 (corrected).

It should be emphasized here that this secondary scoring has
a lot to do with how the experiment was  performed and what
quantities are of biological interest; for example, evoked versus
spontaneous activity, correct or incorrect responses, etc. However,
reproducibility is assessed in a completely task-independent man-
ner; many different secondary analyses of interest can be applied
to BICAR components, and none of them affect the BICAR decom-
position.

3. Results

3.1. Reproducibility cutoff
BICAR ranks each paired component by reproducibility but by
itself does not generate a significance level below which an indi-
vidual subject’s components are deemed to be spuriously paired
during the matching step. Such an approximate cutoff can be ana-
lytically derived, and it is dependent on both the data and BICAR’s
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Fig. 4. Most reproducible stimulus-synchronized BICAR components. This figure and Figs. 5 and 6 show the four most reproducible BICAR components from each of the five
subjects in this study. The portion of those twenty components that are significantly synchronized to either stimuli alone (blue box) or both stimuli and responses (black
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ox)  are shown here. The colors of the enclosing boxes have been chosen to matc
hown  as described in Section 2. Slice numbering in the spatial sources is shown fo
lices.  Component numbering (in boxes) is arbitrary and used for easy reference in t
ame  as in Fig. 8.

arameters. More details on this derivation are given in Appendix A,
ut here we introduce the ideas behind, and summarize the results
f, those calculations.

Consider a “worst-case” random, nondegenerate component
airing: if two individually reproducible components – one from
EG and one from fMRI – were paired spuriously, one could obtain
n artificially highly reproducible BICAR component that does not
epresent a true joint component. Suppose there is a component
n the EEG data which has reproducibility R* close to unity; then
he reproducibility R of a BICAR component whose spatial portion
s randomly paired with this temporal source is

 = wR∗ + (1 − w)

⎡
⎣ 2

K(K − 1)

∑
i,j;j>i

rij

⎤
⎦ . (3)

ere, w is the weight given to the EEG data — all calculations in this
aper use w = 1/2, but in deriving the cutoff we  simply require w ∈
0, 1]. rij is the absolute correlation between two  spatial sources in
ifferent realizations. All BICAR sources consist of one component
rom each of K realizations, hence there will be K(K − 1)/2 unique
orrelations to sum.
Calculating R in Eq. (3) therefore depends critically on what
e will call the (spatial) RAICAR distribution, after Yang et al.

2008). Fig. 7A shows a sample RAICAR distribution from real
MRI data. Note the logarithmic scale on the y axis; most cross-
ealization absolute correlations are small. Considering random,
point colors in Fig. 8 and give the task event association. All signals and slices are
first source but suppressed thereafter; all spatial sources have the same displayed
t. Subject number (S1, S2, etc.) is included to the left of each component, and is the

nondegenerate pairing means that to calculate R one draws
K(K − 1)/2 random rijs from the RAICAR distribution and computes
their mean. This then means that the reproducibility of random
pairs depends on the data and algorithm parameters via the statis-
tics of the RAICAR distribution.

The rij are certainly identically distributed, and if not completely
independent very nearly so. For even moderate K the sum in Eq. (3)
can have hundreds of terms. The central limit theorem thus gives
the distribution for the term in brackets as:

2
K(K − 1)

∑
rij∼N

(
〈rij〉,

2�2(rij)
K(K − 1)

)
, (4)

where N(�, �2) is a normally distributed random number with
mean � and variance �2, and 〈rij〉 and �2(rij) are the mean and
variance of the spatial RAICAR distribution, respectively. Since the
sum is normally distributed, the spurious reproducibility R is also
normally distributed as

R∼N

(
wR∗ + (1 − w)〈rij〉, (1 − w)2 2�2(rij)

K(K − 1)

)
, (5)

a normal variate with
〈R〉 = wR∗ + (1 − w)〈rij〉 (6)

�(R) =
√

2(1 − w)�(rij)√
K(K − 1)

. (7)
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Fig. 5. Most reproducible response-synchronized BICAR components. The portion of the four most reproducible BICAR components from each of the five subjects which are
significantly synchronized to responses. Component numbering continues that begun in Fig. 4. Slices, signals, and subject number are shown as described in Section 2 and
the  caption of Fig. 4.
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ig. 6. Most reproducible nonsynchronized BICAR components. This figure shows
ask-associated. The component numbering here continues the numbering in Fig. 5
nd  5.

This spurious reproducibility distribution can be used to set a
ignificance bound. Specifically, set the bound Rc as
c = 〈R〉 + n��(R), (8)

 desired n� standard deviations above the expected spurious
eproducibility. Note that as K → ∞ , Rc → 〈R〉. The reproducibil-
ty cutoffs calculated in this study use w = 1/2 and n� = 2. If we

ig. 7. Sample RAICAR distributions. (A) A sample real spatial RAICAR distribution for 

ogarithmic scale; the vast majority of the cross-realization absolute correlations in real 

n  Appendix A. For 63 extracted sources, the ratio of the density at ε to that at 1.0 is app
nimportant in either case and both distributions have been rescaled for legibility.
ortion of the twenty BICAR components which were not found to be significantly
s used for easy reference in the main text. Slice numbering is the same as in Figs. 4

further assume the most reproducible component in the EEG data
has R* = 1, then
Rc = 1 + 〈rij〉
2

+
√

2
K(K − 1)

�(rij) (9)

fMRI data, with a smoothed estimated of the histogram shown in red. Note the
data are small. (B) Idealized RAICAR distribution used in the analytical calculation
roximately 8.3. The scale in this figure is also logarithmic; the actual y values are
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ne can go further than this if assumptions are made about the
orm of the RAICAR distribution; see Appendix A for details on these
alculations. A few comments on what has led up to Eq. (9):

Assuming that R* = 1 is generally a slight overestimate but yields
the most conservative bound.
EEG (temporal) and fMRI (spatial) sources are assumed to be
equally weighted for BICAR source reproducibility calculation
(w = 1/2). Other choices, like weighting according to the num-
ber of samples in each, are possible, in which case Eq. (9) could
be arrived at by combining Eqs. (6)–(8), with the chosen w.
All cutoffs in this study use K = 30.
This form for the cutoff has been calculated assuming
nondegenerate (one-to-one) component pairing; degenerate
(one-to-many) source matching would yield a different value of
Rc.

From this point, the cutoff Rc can be determined using the data
tself – via the spatial RAICAR distribution – and represents only

 fraction of the total BICAR runtime. No simulation or perturba-
ion testing is necessary to obtain this number. By making simple
pproximations to the true spatial RAICAR distribution, a closed-
orm, analytical expression for Rc can be obtained, which yields
dditional insight into the behavior of the cutoff as a function of
he input data and algorithm parameters (see Appendix A). The cut-
ff is typically strongly dependent on nS, the number of extracted
ources, and weakly dependent on both K and the size nV (num-
er of voxels) of the spatial sources. The cutoffs computed in real
EG-fMRI data using the true, data-dependent spatial RAICAR dis-
ribution are quite close to those obtained using the analytical
alues with simplified spatial RAICAR distributions. For the algo-
ithm parameters in this paper and typical EEG-fMRI data shapes,
c is usually close to, but a bit larger than, one half.

.2. Reproducibility spectra

Fig. 3 shows a sample BICAR reproducibility spectrum (cen-
er); the reproducibility spectrum is simply the reproducibility of
ach BICAR component, plotted in descending order. All BICAR
ecompositions in this paper have 63 components, so each repro-
ucibility spectrum has 63 points. Along with the reproducibility
alues themselves, the spectral plots show the location of the repro-
ucibility cutoff Rc (dotted, horizontal line, center of Fig. 3), and
o which set of task events, if any, each source is significantly
hase-locked (symbol color, center of Fig. 3). Refer to Section 3
nd Appendix A for details about Rc and Section 2 for details about
voked response analysis.

Fig. 8 shows the BICAR reproducibility spectrum for each of the
ve subjects in this study. Refer to the schematic in Fig. 3 for help in

nterpreting the features of these graphs. All thresholds are drawn
t their subject-specific levels, which are close to (but slightly larger
han) 0.5. There are several features of note to these plots. First, all
ve subjects have many above-threshold BICAR components, but
he number is quite variable. Subject S7 has the fewest (13) while
1 the most (31). It is also apparent that every subject save S3 has a
ICAR component with near perfect reproducibility, and all subjects
ave multiple components with R > 0.75. The number and type of
ask-synchronized components also varies widely among the five
ubjects; compare, for example, S2 with S6.  Despite this variability,

ll five subjects have one or more highly reproducible BICAR com-
onents significantly associated with either Stimuli (blue symbols),
esponses (red symbols), or Both (black symbols). In general there
re more response-locked BICAR components than any other cate-
ory, which generally makes sense as the favorable signal-to-noise
e Methods 219 (2013) 205– 219

characteristics of the motor system likely make such components
more easily extractable.

3.3. BICAR components

Ranking by reproducibility and employing the cutoff Rc provides
a principled way  of selecting BICAR components that avoids the use
of prior information. In principle, the next step would be to group
similar components across subjects, in which all above-threshold
components for each subject are included. However, there are not
enough subjects in this study to perform a proper group analysis,
and there are far too many above-threshold components for each
subject to show them all. There are two  possible compromises that
allow the display of an unbiased selection of BICAR results for this
study. One would be to show the top N most reproducible compo-
nents, irrespective of which subject they came from, and the other
would be to show the top k components from each subject. The
latter route was chosen, with k = 4, displayed in Figs. 4–6. Note that
save for the presence of subject S3,  these two strategies (the former
using N = 20) would result in quite similar displays.

The summary statistics for the reproducibilities of these
20 BICAR components are as follows: R = 0.864, �(R) = 0.10,
median(R) = 0.841, max(R) = 0.999, and min(R) = 0.689. The com-
ponents are divided into three groups: Fig. 4 shows components
significantly synchronized to either stimuli or both stimuli and
responses, Fig. 5 shows components significantly synchronized to
responses only, and Fig. 6 shows those which are not significantly
phase locked to either set of task events. The colors of the figure
borders are picked to match the symbol coloring in Fig. 8. Methods
give a full description of the conventions for display of BICAR com-
ponents. For components which were significantly synchronized to
either stimuli, responses, or both (enclosed in blue, red, and black
boxes respectively), rasters and trial averages are shown for the
temporal sources and slices for the spatial sources. For nonsynchro-
nized components (gray boxes), only slices (the spatial portion of
the BICAR sources) are shown.

It is clear that among the most reproducible BICAR components
there are joint sources with biological significance. Component
one (Fig. 4) has strong activity in dorsal occipital cortex with a
peak location of roughly 250 ms  after search field presentation.
Note also component four (Fig. 4); while it synchronizes to both
stimuli and responses, its alignment to stimuli is more impressive
and its spatial source shows some overlap with component one.
Areas involved in motor planning (finger selection) (Grafton et al.,
1998) and execution (button press upon target selection) are both
present in multiple subjects. For example, consider components
three, five, and ten (Fig. 5). Among the nonsynchronized compo-
nents (Fig. 6) numbers twelve and thirteen are clearly relevant
to the task (though not synchronized to triggers), as they include
portions of the attention network and the task is spatial search.

A subject may  lack a particular component in this display, but
that does not necessarily mean it was  not found. For example, sub-
ject S2 has a component with R = 0.62 which is markedly similar
to component one in Fig. 4 (not shown). However, it is not among
that subject’s top four most reproducible BICAR components, and
hence is not displayed in Fig. 4. Inspection of Fig. 8 reveals it is
the eleventh most reproducible S2 component, but it falls above
the cutoff. Subject S6 has no above-threshold stimulus-associated
components, and in fact none at all even when ignoring Rc. It is clear
that not every biologically relevant component is present in every
subject; however we have too few subjects in this study to make

any more general claims or to perform a proper group analysis of
all the above-threshold BICAR components.

Reproducibility and trial-locking alone are not guaranteed to
remove artifacts. Notice component six in which the dominant
activity is localized to the white matter, and component seventeen
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ig. 8. Reproducibility spectra for the five subjects in this study. Fig. 3 gives a sch
alculations used to assess significance. Note that the number of highly reproduci
otted  horizontal line) varies among the five subjects, as do the number of significa

hat is at least partially a vascular artifact. Artifacts can also be
eproducible! They can also be significantly phase-locked to task
vents, as for example susceptibility artifacts induced by a vertical
ead movement coincident with each button press or stimulus;
hile this particular artifact is not among the most reproducible

omponents shown here, it is present as an above-threshold
omponent in subject S1 (not shown). Artifacts with stereotypical
patial or temporal patterns, in either EEG or fMRI, could be found
y using a secondary scoring method that selects components
ased on similarity to temporal or spatial templates. Alternatively,
n artifact correction (not trial-based rejection) method could be
mployed before running BICAR. This was not done in this study.

ince many correction methods are ICA-based (Jung et al., 2000;
lados et al., 2011; Wallstrom et al., 2004; Urrestarazu et al., 2004;
igário, 1997), if this route were chosen the resulting reduction in
ata dimensionality after correction would have to be taken into
ccount when setting nS in BICAR.
ic guide to understanding the various features of reproducibility spectra and the
mponents (those which sit above the subject-specific cutoff Rc , represented by a

ask-associated components. Compare, for example, subjects S2 and S6.

4. Discussion

BICAR, a new general algorithm for spatiotemporal data fusion
was applied to concurrent EEG-fMRI data. The utility of the algo-
rithm has been shown at the individual subject level of analysis
using five participants who performed a spatial search task. A
procedure was described to obtain a data-dependent significance
cutoff for BICAR components, as well as a simple method to analyze
BICAR components post hoc for evidence of statistically signifi-
cant phase-locking to task events of interest. Some of the most
reproducible BICAR components are clearly biologically relevant.
Components representing visual processing, attention, motor plan-

ning, and execution were found in multiple subjects.

The response-locked components are more impressive than the
stimulus-locked ones and easier to find; this likely has to do with
the nature of the task. Since the real stimulus-associated cognitive
event of interest is not associated directly with presentation of the
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earch field, but rather with localizing and discriminating the target
tem (Buschman and Miller, 2007), it can be difficult to locate. This
s because localization and discrimination will occur at a variable
ime after search field presentation and before the motor response,

aking it poorly trial-aligned with either trigger. Nevertheless, for
he purposes of this demonstration, there is a robust identification
f movement and to a lesser degree, visual stimulus synchronized
ctivity.

It bears repeating that no task information is used in BICAR itself.
his means BICAR could be used in multiple ways, for example:
a) to reveal evoked activity, as in this manuscript, (b) to classify
oint components based on frequency information, and (c) as an
CA-based pre-filter for removing non-reproducible activity from
oth the EEG and fMRI datasets, which could then be further ana-

yzed using almost any existing EEG-fMRI method. Item (b) above
s an obvious extension: trigger related or global (whole signal)
ime-frequency maps could be computed and components ranked
ccording to power in frequency bands of interest (alpha, beta, mu,
tc.). Yet another scoring method potentially relevant for the search
ask described in this manuscript would be to analyze the temporal

ixing coefficients – scalp maps – for sterotypical patterns similar
o those observed with the P300 event-related potential (Polich,
007), and rank them in order of similarity to this pattern. Again,
his would not require any reanalysis of the BICAR components,
s the data itself has not changed, only the endpoint quantity of
nterest. Multiple secondary scoring methods could also be used.
coring of components on any axes other than reproducibility will
ecessarily reflect the goals of the scientist and the experiment;
eproducibility exists outside of these considerations.

There are several ways to improve BICAR, of which two stand
ut: optimization of the transfer function (TF) connecting the EEG
nd fMRI data from within BICAR itself, and integration of BICAR
esults into a population-level analysis. The first of these is impor-
ant because, while we expect in general that the TF connecting the
EG and fMRI data will resemble an HRF, it is not an HRF. It connects
ynamics to dynamics, in the form of transformed, decimated tem-
oral sources to mixing matrix elements for spatial sources. BICAR
eeds a TF to run, and for this study a reasoned guess has been made
bout the likely shape of the TF and its parameters. The results even
rom this simple assumption are promising, but there are many
easons to believe a simple HRF is suboptimal for this problem. An
lgorithm for estimating the TF from within BICAR would benefit
rom calibration via simulations, with gains via simulation leading
o direct improvements in real data applications, as TF estimates
loser to the true value will generate better component matches
nd higher component reproducibility. Higher reproducibility com-
onents are of higher quality, as (a) low reproducibility is generated
y averaging together groups of components with low similarity,
nd (b) our prior simulation studies have demonstrated that true
known) sources have higher reproducibility (Brown et al., 2012).

While the emphasis of the current work was to establish the
eliability of the BICAR method at the individual subject level of
nalysis, additional methods will be needed to combine compo-
ents across subjects for group level inference. The most effective
ethod for placing BICAR results in a population-level analysis
ould likely involve data clustering. Clustering has been used to

ood effect with neuroimaging data, particularly for organizing
CA analyses of fMRI data (Himberg et al., 2004; Esposito et al.,
005), separating EEG data into microstates (Pascual-Marqui et al.,
995), and grouping voxel time series (Goutte et al., 1999). All
bove-threshold BICAR components across all study subjects could

e clustered using a dissimilarity measure in both time (trigger-
ligned averages of temporal sources) and space (image volumes).
fter clustering, group-average components could be constructed

rom the clusters, but reproducibility should again be taken into
ccount here. Since the reproducibility of above-threshold BICAR
e Methods 219 (2013) 205– 219

components can vary by almost a factor of two  (depending upon the
value of Rc), the group averages should be reproducibility weighted.
This allows the most reproducible components to carry the most
weight in the group mean, which is as it should be, since they
represent the most well-estimated activity.

One-to-one, nondegenerate matching of temporal and spatial
sources was considered exclusively in this manuscript. In some
situations, matching multiple temporal sources to a single spatial
source may  be appropriate (Yuah et al., 2012). Many-to-one degen-
erate matching is possible in BICAR but would require modifications
to the existing algorithm. For one, the details of reproducibility cut-
off calculation would change, though not its motivation and utility.
In a situation where not all spatial components survive matching
to be incorporated into BICAR components, to calculate the cut-
off we  would no longer be sampling from the full spatial RAICAR
distribution (Fig. 7) but rather from a restricted distribution of only
the cross-correlations among the subset of spatial components that
are matched to a temporal component in any realization pair. This
therefore means that we  would have to calculate the cutoff after
the matching step rather than after decomposition as done here,
and the assumptions underlying our analytical calculations would
no longer hold. However, even in the case of one-to-one match-
ing, one could eschew the calculated cutoff we present here and
instead create ensembles of random matches. While this would be
much more computationally intensive, it would not be prohibitive,
would be easily parallelizable, and would pose no additional the-
oretical difficulties. Hence one could always default to simulating
the null model if a suitably accurate calculated cutoff could not be
derived.

Another more subtle issue is the allowed degree of degener-
acy: how few spatial components would we tolerate? It may  be
desirable to reward not only good match quality, in the sense of
high correlation between transformed temporal sources and spa-
tial loadings, but also to reward diversity of source selection. This
would allow retention of more unique spatial components in the
matches while sacrificing some total match quality, which would be
particularly desirable if that match quality sacrifice was small com-
pared to the number of additional components retained. A balance
between goodness-of-fit and source inclusion could be obtained by
matching using a multiobjective cost function that rewards high
average correlation in the matches but penalizes the overall match
set for including fewer unique spatial sources. However, the proper
weighting of the goodness-of-fit and diversity terms would require
substantial investigation. In addition, the use of a multiobjective
cost function would raise the possibility of a Pareto front in the
cost space (Messac and Mullur, 2007), in which one cannot simulta-
neously achieve both goals and must trade one for the other. Unlike
for the reproducibility cutoff, the modifications to the matching
algorithm that would allow for many-to-one degenerate matching
would require substantial synthetic data studies in order to under-
stand if and when source diversity is a problem and how to optimize
the many-to-one matching process.

The results in this manuscript show that BICAR is a promising
new data-driven method for mining concurrent EEG-fMRI data at
the individual subject level. Future studies will be directed towards
improving BICAR in the manner described above, as well as posing
difficult experimental tests for BICAR’s ability to separate sources
of neural activity in both time and space.
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ppendix A. Derivation of Rc

.1. A workable example: setup

Calculating a subject and data-specific Rc in Eq. (8) requires cal-
ulation of the real spatial RAICAR distribution for each subject,
hich can be done anytime after the initial ICA step of BICAR is per-

ormed. In general, no further analytical expression can be obtained
or Rc. However, insight into the dependence of the bound on algo-
ithm parameters, particularly the number of extracted sources nS,
an be gained from considering a highly idealized spatial RAICAR
istribution. Suppose decomposition of the spatial data produces
ne component that is perfectly reproduced in each of the K real-
zations, and all other components never appear in more than one
f the K realizations. Then the spatial RAICAR distribution looks like
hat in Fig. 7B. The total number of rijs for nS sources extracted in K
ealizations is

T =
[

nS(nS − 1)
2

][
K(K − 1)

2

]
, (A.1)

(K − 1)/2 of which equal unity and NT − (K(K − 1)/2) of which equal
. The usage of a single nonzero number ε here is not strictly true;
here will actually be a distribution of rijs with expected value ε.
owever, this will hardly matter, as will be shown below. Specifi-
ally,

ε is small but not equal to zero. This is because, even for two
sources with zero Pearson correlation, the expected value of their
absolute correlation is not zero. The use of absolute Pearson cor-
relation results in a small amount of skew to the right.
The particular value of ε, and the spread around that value for
many uncorrelated sources, depends on the size of the spatial
source. In the EEG-fMRI case, this is the number of (independent)
voxels.
For sources the size of fMRI images (O(104) voxels), ε is small
(O(10−2)), and the error in using a single expected value in the
calculation will be negligible.

.2. Calculating ε

An approximate value for ε can be obtained as follows. Suppos-
ng the spatial sources are standardized, then the goal is to compute
he expected value of

 = 〈
∣∣∣∣∣1n
∑

i

xiyi

∣∣∣∣∣〉, (A.2)

here i sums over the n voxels in the spatial source. Proceed
y assuming xi, yi ∼ N(0, 1); this assumption of normality is cer-
ainly not true for the real sources, but will make little difference

 only the mean and variance will matter. While the product of
wo Gaussian functions is also Gaussian, the distribution function
f the product of two Gaussian random variates is distributed as
eisstein (2012)

(z; �1, �2) = 1
��1�2

K0

( |z|
�1�2

)
, (A.3)

here K is a modified Bessel function of the second kind. For the

pecial case of K0, K has the integral representation (Abramowitz
nd Stegun, 1972)

0(x) =
∫ ∞

0

cos(xt)√
t2 + 1

dt. (A.4)
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P(z ; �1, �2) in Eq. (A.3) has a mean of zero and variance equal to
�2

1 �2
2 .

It thus remains to compute

ε = 〈
∣∣∣∣∣1n
∑

i

zi

∣∣∣∣∣〉, (A.5)

with zi ∼ P(z ; �1, �2). The n in Eq. (A.5) will generally be quite large,
as it is the number of brain voxels in the spatial sources. Thus the
central limit theorem can be applied to this sum. Each term in the
sum is iid. with finite mean and variance, hence as the number
of terms in the sum grows large, it converges in distribution to a
normal variate N(�, �2/n), where � and �2 here are the mean and
variance of the distribution of each term. Since by assumption xi,
yi ∼ N(0, 1), � = 0 and �2 = (1 * 1)/n = 1/n. Hence,

ε ≈
〈∣∣∣N (0,

1
n

)∣∣∣〉 (A.6)

The task of computing ε is now reduced to determining the dis-
tribution of |z| when z ∼ N(�, �2). This is relatively straightforward
using the cumulative density function. Suppose f(z) is the distribu-
tion function for z, and F(z) the cumulative density. Then

P(|x| < z) = P(x < z) − P(x < −z) (A.7)

= F(z) − F(−z), (A.8)

and the distribution function g(|z|) for |z| can be obtained via dif-
ferentiation

g(|z|) = dP(|x| < z)
dz

= f (z) − (−1) ∗ f (−z) = f (z) + f (−z). (A.9)

So far the fact that the distribution of z is known has not been used.
For a normal density function, f(− z) = f(z), and thus

g(|z|) = 2f (z). (A.10)

For the special case of a normal f(x), g(x) is called the folded
normal distribution (Leone et al., 1961), or for � = 0 a half-normal
distribution. The folded normal for a normal distribution N(�, �2)
has mean 〈x〉 and variance �2

x

〈x〉 = �

√
2
�

e−�2/2�2 + �
[

1 − 2�
(−�

�

)]
(A.11)

�2
x = �2 + �2 −

(
�

√
2
�

e−�2/2�2 + �
[

1 − 2�
(−�

�

)])2

, (A.12)

where � is the CDF of a standard N(0, 1) normal distribution. This
simplifies considerably for a half-normal distribution to

〈x〉 = �

√
2
�

(A.13)

�2
x = �2

(
1 − 2

�

)
. (A.14)

Hence by substituting � =
√

1/n,

ε =
√

2
n�

(A.15)

�ε =
√

1
n

(
1 − 2

�

)
. (A.16)
Assuming a typical image size is 104 brain voxels, ε = 0.008, an
extremely minor correction, and the width of the distribution is
of the same order as the mean. For sources of size n = 100, ε = 0.08,
which is not completely neglectable on a [0, 1] scale.
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.3. A workable example: calculation

Returning to the idealized RAICAR distribution in Fig. 7B, the
ean and standard deviation can be directly computed. The prob-

bilities for drawing a 1 and a ε from this distribution are,
espectively,

1 = K(K − 1)
2NT

= 2
nS(nS − 1)

(A.17)

ε = NT − p1 = (nS − 2)(nS + 1)
nS(nS − 1)

. (A.18)

he mean and variance will therefore be, by definition,

rij〉 = p1 + εpε (A.19)

2(rij) = p1 + ε2pε − 〈rij〉2. (A.20)

 bit of algebra and the use of the identity p1 + pε = 1 yields

rij〉 = 2
nS(nS − 1)

{
1 + ε

(
(nS + 1)(nS − 2)

2

)}
(A.21)

2(rij) = (1 − ε)2

[
2(nS − 2)(nS + 1)

n2
S (nS − 1)2

]
. (A.22)

o further simplify the cutoff, assume R∗ = 1, w = 1/2, and n� = 2.
hus the cutoff in the example is

c(nS, K, ε) = 1
2

+ 〈rij〉
2

+
√

2
K(K − 1)

�(rij), (A.23)

ith 〈rij〉 and �2(rij) given by Eqs. (A.21) and (A.22). The notation
or Rc has been modified to emphasize the explicit dependence on
S, K, and ε. Notice that the cutoff will be strongly dependent on
he number of extracted sources. For the parameters in this study,

c(63, 30,  0.008) = 0.506, (A.24)

hich is quite close to 1/2, a result satisfying to the intuition. How-
ver, for fewer (nS = 5), smaller (n = 102) sources and fewer (K = 10)
ealizations,

c(5,  10,  0.08) = 0.675, (A.25)

 substantially larger value.
The calculation of Rc for the idealized RAICAR distribution has

learly shown the strong dependence of the cutoff on both the input
patial data2 and algorithm parameters. For this study, subject- and
ata-specific bounds were calculated using the empirical RAICAR
istribution for that subject; they were within (0.51, 0.53), larger
han the idealized bound but close to 1/2. For a large number of
xtracted sources, large K, and source vectors with thousands of
lements, one could simply set Rc = 1/2. However, this would clearly
e an underestimate in other situations, and this also ignores pos-
ibly important variations in the shape of the RAICAR distribution.
hus it is preferable to use the calculated Rc.
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