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Single-Trial Classification of Event-Related
Potentials in Rapid Serial Visual Presentation

Tasks Using Supervised Spatial Filtering
Hubert Cecotti, Miguel P. Eckstein, and Barry Giesbrecht

Abstract— Accurate detection of single-trial event-related
potentials (ERPs) in the electroencephalogram (EEG) is a
difficult problem that requires efficient signal processing
and machine learning techniques. Supervised spatial filtering
methods that enhance the discriminative information in EEG
data are commonly used to improve single-trial ERP detection.
We propose a convolutional neural network (CNN) with a layer
dedicated to spatial filtering for the detection of ERPs and
with training based on the maximization of the area under
the receiver operating characteristic curve (AUC). The CNN
is compared with three common classifiers: 1) Bayesian linear
discriminant analysis; 2) multilayer perceptron (MLP); and
3) support vector machines. Prior to classification, the data
were spatially filtered with xDAWN (for the maximization of
the signal-to-signal-plus-noise ratio), common spatial pattern, or
not spatially filtered. The 12 analytical techniques were tested
on EEG data recorded in three rapid serial visual presentation
experiments that required the observer to discriminate rare
target stimuli from frequent nontarget stimuli. Classification
performance discriminating targets from nontargets depended
on both the spatial filtering method and the classifier. In addition,
the nonlinear classifier MLP outperformed the linear methods.
Finally, training based AUC maximization provided better
performance than training based on the minimization of the
mean square error. The results support the conclusion that the
choice of the systems architecture is critical and both spatial
filtering and classification must be considered together.

Index Terms— Brain–computer interface (BCI), common
spatial patterns (CSP), convolution, electroencephalogram (EEG),
neural networks, rapid serial visual presentation (RSVP), spatial
filters.

I. INTRODUCTION

EVENT-RELATED potentials (ERPs) are systematic volt-
age fluctuations caused by the postsynaptic neural activ-

ity of cortical pyramidal neurons that are time-locked to
internal or external events [1]. ERPs are typically measured
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noninvasively using electrodes placed on the scalp and they
are a direct high temporal resolution (<10 ms) measure of
neural activity. Importantly, specific ERPs (voltage deflections
at specific postevent time points) have been associated with a
variety of perceptual and cognitive functions [2].

The specific ERPs evoked by a given individual performing
a task can be relatively consistent in terms of both amplitude
and latency [3]. The stability of specific ERPs has been
leveraged in the application of brain–computer interfaces
(BCIs) that use machine learning algorithms to detect specific
ERP responses [4], [5]. For example, several groups have
developed BCI spellers that are based on the detection of the
P300 ERP [6] and the N200 ERP [7]. In spite of the relative
stability of these ERPs, accurate and reliable detection of
the specific neural response often requires averaging multiple
responses. For instance, it is common that about ten individual
P300 responses are averaged in BCI spellers to assure an
optimal detection [8]. The need for averaging is largely
due to noise in the electroencephalogram (EEG) that is not
task-related and by the spatially diffuse distribution of the
ERP across electrodes. Although averaging multiple ERP
responses can increase the efficiency of detection, it impedes
the information transfer rate of the BCI [9]. Therefore, there
is an increasing emphasis on identifying methods that permit
ERP detection using a single response.

New signal processing and machine learning methods have
made efficient single-trial detection of ERPs possible and has
extended the number of possible applications relying on ERP
detection. One application that has received some attention in
the recent BCI literature has been single-trial target detection
in rapid serial visual presentation (RSVP) tasks [10], [11].
In the RSVP paradigm, a rapid sequence of images
(e.g., 2–10 images per second) are presented to observers
sequentially in the same location [12], [13]. The stream
of images contains different types of visual stimuli that
can be defined as targets or nontargets and depending on
the specific task, the targets and nontargets elicit different
ERPs. Several studies have used this paradigm during visual
search [14]–[18], and face recognition tasks [19]. The strength
of the RSVP paradigm is that the speed of the stimulus
sequence combined with single-trial ERP detection increases
the upper limit of potential information transfer rates in BCI
applications. However, despite the possible use of single-trial
ERP detection in RSVP tasks, efficient detection remains a
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difficult problem and an active research area. For example, in
a recent international machine learning workshop competition
(MLSP) [20] using an RSVP task, the area under the receiver
operating characteristic (ROC) curve (AUC) of the best
participants reached about 0.82.

There are multiple potential signal processing approaches
that may increase the efficiency of detecting ERPs using a
single measured response. One approach that is the focus of
this paper is spatial filtering. Spatial filtering refers to methods
that change the EEG signal in a manner that enhances the
relevant information contained in the signal. Spatial filtering
plays an important role in EEG analysis due to the background
noise of the EEG and because of the diffusion of the signal
caused by the dura, skull, and scalp. Working with high quality
signals is even of greater importance in single-trial analysis.
The efficacy of spatial filtering in the detection process has
been demonstrated in the P300 speller paradigm [21] and
for motor imagery based BCIs [22]. What is unclear from
these studies is the extent to which the improvements gained
using spatial filtering are dependent on the subsequent clas-
sification approach. Indeed, Parra et al. [23] demonstrate the
utility of linear analysis methods for discriminating between
different events in single-trial, stimulus driven experimental
paradigms using EEG and MEG. Other efficient strategies
without spatial filtering have been proposed for EEG single-
trial detection. Those methods include linear classifiers, such
as Fisher’s linear discriminant analysis, Bayesian linear dis-
criminant analysis (BLDA) [24], and support vector machines
(SVM) [8], [25].

The primary purpose of this paper was to investigate the
effects of spatial filtering on the single-trial detection of ERPs
recorded during an RSVP task. To investigate this issue, we
used a convolutional neural network (CNN) with an embedded
spatial filtering approach in which the filtering and classifica-
tion are performed in an united way. Unlike previous CNN
applications for the detection of ERP in the P300 speller [26],
we propose a learning approach based on the maximization
of AUC. Because it is unknown whether spatial filtering is
required for obtaining optimal performance and whether the
performance achieved by the embedded spatial filtering in the
CNN could also be achieved with a different method, we
also used two different state-of-the-art spatial filtering methods
and three classifiers. The two spatial filtering methods were:
xDAWN and common spatial pattern (CSP). The classifiers
included both linear classifiers (BLDA and SVM) and a
multilayer perceptron (MLP). Each combination of spatial
filtering and classification approach were evaluated on EEG
data from three separate RSVP experiments, using a total of
28 data sets. In addition, we also assessed the extent to which
the single-trial classification performance was modulated by
behavioral performance relative to ground truth.

This paper is organized as follows. First, we present the
general rationale for the spatial filtering approach. Second,
we present specific spatial filtering methods used in this paper.
Third, we describe the classification methods and performance
evaluation metrics. Fourth, we present the experimental meth-
ods. Finally, the results are presented and discussed in the last
two sections.

II. SPATIAL FILTERING

The purpose of spatial filtering is to enhance a particular
subset of information that is contained in the EEG signal
by creating virtual electrodes, or virtual sensors. We denote
by channel the notion of virtual electrodes, which reduce
the number of features. Channels represent a weighted com-
bination of the electrode inputs. Here, we make two main
assumptions about the data that influences the creation of
the spatial filters. First, multiple sets of spatial filters can
be created for a given data set, but because of the stability
of the ERP to specific stimuli, we assume that the same
set of spatial filters can be applied across the whole signal
because the characteristics of the stimuli during the experiment
are stable. Indeed, the latency and amplitude of the ERP
may vary over time for a given task in relation to different
experimental parameters, such as the target probability and
the stimulus meaning [27], [28]. Second, it is assumed that
the ERP waveform is spatially stationary. These assumptions
allow us to apply uniformly a single set of spatial filters over
time, the goal of which is to enhance the relevant information.
A key aspect of these filters is that each of the sensors is
weighted relative to the discriminative information it carries.
Because of the creation of channels and the relative weighting,
filtering reduces the number of input features for the classifiers
because the number of channels (Nc) is usually inferior to the
number of sensors (Ns ), Nc < Ns .

We define a channel as a linear combination of the signals
measured by the Ns sensors. A channel c is defined by Ns

weights. At each time j the output value of a channel c is

c j =
Ns∑

i=1

wi Ii, j (1)

where I is a 2-D signal, 0 ≤ i < Ns .
Without spatial filtering, a channel i1 corresponds to a

sensor i1 (if i = i1 then wi = 1, wi = 0 otherwise). The
creation of virtual sensors results in a set of spatially inde-
pendent vectors. The information from the different sensors is
condensed in one scalar at a time j . The goal is to find an
optimal set w(k)i , 0 ≤ i < Ns , and 0 ≤ k < Nc.

A channel usually represents the effect of a spatial filter.
Several approaches are presented in the literature for setting
adaptive spatial filters, including statistical methods like inde-
pendent component analysis (ICA) and CSP [22], [29]–[32].
We distinguish supervised spatial filtering method like CSP,
and other methods like ICA that do not rely on the knowledge
of the stimulus onsets. While ICA can be used for spatial
filtering, its main purpose is blind source separation and not to
discriminate classes. In this paper, we focus on efficient spatial
filtering methods that require the knowledge of the stimulus
onsets, where the goal is to enhance differences between two
classes. In the following subsections, we consider two state-
of-the-art methods: xDAWN and CSP, which are based on the
Rayleigh quotients. For xDAWN, the goal is to maximize
the signal-to–signal-plus noise ratio (SSNR) whereas for CSP,
the goal is to maximize the ratio between the discriminative
activity and the common activity, leading to optimal variances
for the discrimination of two types of signals [22].
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A. xDAWN

The xDAWN algorithm has been successfully applied in
BCI for ERP detection and sensor selection in the P300
speller paradigm [21], [33]–[35]. It considers an algebraic
model of the recorded signals X of size Nt × Ns , where
Nt is the number of temporal samples in the recorded EEG
signals. X is composed of three terms: 1) the responses on
targets (D1 A1); 2) a response common to all stimuli, i.e.,
targets and nontargets confound (D2 A2); and 3) the residual
noise (H )

X = D1 A1 + D2 A2 + H (2)

where D1 and D2 are two real Toeplitz matrices of size Nt ×N1
and Nt × N2, respectively. D1 has its first column elements
set to zero except for those that correspond to a target onset,
which are represented with a value equal to one. For D2, its
first column elements are set to zero except for those that
correspond to stimulus onset. N1 and N2 are the number of
sampling points representing the target (the ERP response on
the target) and superimposed evoked potentials, respectively.
A1 and A2 are matrices of size N1 × Ns and N2 × Ns ,
respectively. H is a real matrix of size Nt × Ns .

The goal of applying spatial filters U is to enhance the
SSNR of the responses corresponding to the presentation of a
target (D1 A1U ), where N f is the number of spatial filters

XU = D1 A1U + D2 A2U + HU. (3)

We define the SSNR in relation to the spatial filters by

SSNR(U) = T r(U T ÂT
1 DT

1 D1 Â1U)

T r(U T X T XU)
(4)

where Tr(.) is the trace of the matrix, and Â1 corresponds to
the least mean square estimation of A1

Â =
[

Â1

Â2

]
(5)

= ([D1; D2]T [D1; D2])−1[D1; D2]T X (6)

where [D1; D2] is a matrix of size Nt × (N1 + N2) obtained
by concatenation of D1 and D2.

Spatial filters are obtained through the Rayleigh quotient
after two QR decompositions and a singular value decompo-
sition by maximizing the SSNR [36]. More details about the
computational method can be found in [21]

Û = argmax
U

SSNR(U). (7)

B. Common Spatial Pattern

CSP is one of the most used spatial filtering method
in discriminating different classes in motor imagery based
BCIs, where the task is to classify two different states of
brain activity, e.g., imagery of the movement of the left
or the right hand [22], [37]–[40]. Although this method is
mainly applied for motor imagery, we consider here this
method for ERPs. The CSP feature extraction can be estimated
and interpreted using the framework of Rayleigh coefficient
maximization.

First, two covariance matrices �0 and �1 are calculated for
the two classes (target and nontarget)

�i =
∑

j∈Ci

E j · ET
j

T r(E j · ET
j )

(8)

where E j ∈ R
Ns ×N1 denotes an EEG data matrix of the j th

trial.
The CSP method aims at finding a spatial filter w that

maximizes the difference in the average band power of the
filtered signal while keeping the sum constant

D = w�0w
T (9)

I − D = w�1w
T (10)

where D is a diagonal matrix and I is the identity matrix.
Then, we shall construct a matrix U which is composed of
the first and last components of u, which correspond to the
first and last ordered eigenvalues.

The CSP matrix is extracted thanks to the Rayleigh coef-
ficient maximization by solving a generalized eigenvalue
problem

Û = argmax
U

U T R0U

U T R1U
(11)

where R0 and R1 represent the discriminative and common
activity, respectively, and are defined as follows:

R0 = �0 − �1 (12)

R1 = �0 + �1. (13)

The discriminative activity corresponds to the differences
between targets and nontargets whereas the common activity
corresponds to what is common to targets and nontargets. The
spatial filters uc are based on the eigenvectors from both ends
of the eigenvalue spectrum. Like for MLPcnn, we consider
four spatial filters Nc = 4. Thus, the set of spatial filters
Û ∈ R

Ns ×Nc is

Û = [u0, u1, uNs−2, uNs−1]. (14)

III. METHODS

We tested three classifiers using four different spatial
filtering approaches. The first method was based on a CNN
(MLPcnn), and therefore includes the classifier. In this method,
spatial filtering was a part of the neural architecture. The
set of spatial filters is tuned in relation to their discriminant
power once they are combined for classification. We denote
by MLPcspand MLPxdawn, the method with CSP and xDAWN
as spatial filtering, respectively. With each spatial filtering
approach, we used three different classifers, MLP, a BLDA
classifier [24], [41], and a linear SVM [42], [43]. Finally,
each of the classifiers with filtering was compared with the
same classifiers without filtering. The factorial combination
of classifier × spatial filtering approaches resulted in 12
separate methods.
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A. Convolutional Neural Network

CNNs are efficient for handwriting character recogni-
tion [44], [45], vision [46], and the classification of EEG
signals [26], [47], [48]. It allows extracting some particular
features through its layers that are directly learned in relation
to the problem to solve. This type of neural network has many
advantages when the input data contains an inner structure like
for images (2-D) and some signals (2-D: times × space), when
the features are difficult to model in an analytical way [49].

The neural network for the detection of ERP is composed of
four layers. Each layer is composed of at least one map. In the
first and second hidden layers each map represents the signal
after spatial filtering. The neural architecture is described as
follows.

1) The input layer (L0): I (i, j) with 1 ≤ i ≤ Ns and
1 ≤ j ≤ N1. In the experiment, Ns = 32 and N1 = 26.
This layer corresponds to the EEG signal after temporal
filtering and downsampling.

2) The first hidden layer (L1): It is composed of Nc maps.
In the experiment, we set Nc = 4 as it was used in [33].
We define L1 Mm , as the map number m. Each map of L1
has the size N1. This layer corresponds to Nc channels.
Each map corresponds to a projection of the EEG signal
in 1-D (time). As the weights of each modeled neuron
in a map are shared, the transformation from L0 to L1 is
the application of a convolution filter. As the convolution
is applied only across values in the space domain, the
filter is equivalent to a spatial filter. In L1, the EEG
signal is represented as Nc vectors of size N1.

3) The second hidden layer (L2): It is composed of one
map of 40 neurons. This map is fully connected to the
different maps of L1. The number of neurons was chosen
in relation to previous tests on other database of brain
responses [26], [47].

4) The output layer (L3): This layer has only one map of
M neurons, M = 2 for target and nontarget. This layer
is fully connected to L2. The first and second neuron
have the expected value 1 and 0, respectively, when the
input corresponds to a target, and 0 and 1 when it is not
a target.

We define the value of a neuron in the layer l, in the map
m at the position j by x(l,m, j ), or x(l, j ) when there is only
one map in the layer. Similarly, we define σ(l,m, j ) as the
scalar product between a set of input neurons and the weight
connection between these neurons and the neuron number j
in the map m in the layer l

x(l,m, j ) = f (σ(l,m, j )) (15)

where f is a sigmoid function (hyperbolic tangent for L1,
logistic function for L2 and L3) [50].

We define σ(l,m, j ) for the two hidden layers and the output
layer. It is worth noting that L1, L2, and L3 can be considered
as an MLP where L1 is the input layer, L2 is the hidden layer,
and L3 is the output layer. For L1, each neuron of one map
shares the same set of weights.

1) For L1

σ(1,m, j ) = wt(1,m,0) +
i<Ns∑

i=0

Ii, j · w(1,m,i) (16)

where wt(1,0, j ) is a threshold. A set of weights w(1,m,i)

with m fixed, 0 ≤ i < Nr corresponds to a spatial filter
(the convolution). In this layer, there are Ns +1 weights
for each map.

2) For L2

σ(2, j ) = wt(2,0, j ) +
i<Nc∑

i=0

k<N1∑

k=0

x(1,i,k) · w(2,i,k) (17)

where wt(2,0, j ) is a threshold. L2 is fully connected
to L1. In this layer, each neuron has Nc · Ns + 1 input
weights.

3) For L3

σ(3, j ) = wt(3,0, j ) +
i<40∑

i=0

x(2,i) · w(3,i) (18)

where wt(3,0, j ) is a threshold. L3 is fully connected
to L2.

The learning algorithm for tuning the weights and thresholds
of the network uses the backpropagation [51], by maximizing
the AUC of the validation database. In Section V, we will
also compare learning based on the minimization of the
mean square error (MSE) between the neurons in L3 and
their expected values. At the initialization of the network,
the weights and the thresholds of each neuron are initialized
randomly with a standard distribution around ±1/Ninput where
Ninput is the number of input links for each neuron. For
training, the learning parameter was set to λ = 0.3. This
model was implemented in C++ without any special hardware
optimization.

B. Classifiers

As the spatial filtering step and the classification are united
in MLPcnn, we have considered an MLP for the classification
when we consider spatial filters based on CSP or xDAWN
to stay consistent with the classification method across the
different spatial filtering approaches. The MLP possesses
therefore the same parameters as the last three layers of
the CNN, i.e., the number of input is Nc · N1, the number
of neurons in the hidden layer is 40, and the output layer
contains two neurons. For the evaluation of the classifier, we
provide the results obtained after a five fold cross validation.
Four blocks were considered for training the classifier and the
spatial filters. The remaining block was used for testing the
classifier. We considered 12.5% of the blocks dedicated for
training as a validation database to determine when training
should be stopped. As the classifier contains two outputs, we
define the confidence value of the classifier as

yout = y0 + (1 − y1)

2
(19)

where y0 and y1 are the states of the neurons in the output
layer. For the CNN, we have y0 = x(3,0) and y1 = x(3,1).
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TABLE I

NUMBER OF FREE PARAMETERS FOR EACH METHOD

DURING TRAINING

C. Complexity

Table I presents the number of inputs and the number of
free parameters in the neural network. MLPcnn, MLPxdawn,
and MLPcsp have the same number of inputs as we
consider the same number of sampling points and channels
(Nc ·N1 = 4∗26 = 104). MLPxdawn and MLPcsp have the same
number of free parameters as only the spatial filtering method
changes. The only difference between MLPcnn and (MLPxdawn,
MLPcsp) corresponds to the convolutional layer
(132 = (Ns + 1) · Nc = (32 + 1) ∗ 4). The most complex
network is MLP∅with 33402 connections and thresholds.

D. Performance Measures

The classifiers are then evaluated through ROC graphs based
on the true positive rate (TPR) and false positive rate (FPR).
We define the TPR and FPR as

True positive rate (TPR) = TP

P
= TP

TP + FN
(20)

False positive rate (FPR) = FP

N
= FP

FP + TN
(21)

where TP, FP, TN, and FN are the number of true positive,
false positive, true negative, and false negative, respectively.
ROC curves allow analyzing and visualizing the performance
of classifiers. As the classifier output produces a confidence
measure, it is possible to generate ROC curves and computer
its AUC as described in [52]. In the following parts, we
consider nonparametric ROC curves based on 100 points.

For the behavioral performance, which was a binary
response, we consider the AUC as the normal cumulative
distribution function of d ′/

√
2 where d ′ is the sensitivity index

d ′ = Z(TPR) − Z(FPR) and Z(p), p ∈ [0, 1], is the inverse
of the cumulative Gaussian distribution.

IV. EXPERIMENTS

The 12 different methods were evaluated using three RSVP
tasks that were performed by subjects recruited through the
University of California, Santa Barbara (UCSB) online subject
recruitment system. All procedures were approved by the
UCSB Human Subjects Committee.

A. Experiment 1

Grayscale images (256×256 pixel) of faces (target) and cars
(nontarget) were presented as stimuli to the observers who per-
formed the behavioral task of identifying the correct label of
the image (face/car). Fig. 1 shows examples of the visual stim-
uli with and without noise (participants only saw the versions

Fig. 1. Samples of visual targets (faces, top) and nontargets (cars, bottom)
with their corresponding model.

TABLE II

NUMBER OF PATTERNS FOR EACH CLASS CORRESPONDING

TO A CORRECT BEHAVIORAL RESPONSE

with noise). These images were taken from the Max Planck
Institute for Biological Cybernetics face database [53]. Each
image was presented for 500 ms and immediately replaced
by the subsequent image, resulting in a presentation rate of
2 Hz (visual angle ≈ 4.57°). In each session, target probability
was 0.10. The target-distractor sequences were generated in
blocks of 2 min, keeping a relative constant target probability
over time. Eight healthy subjects participated in the experiment
(mean = 23.5, sd = 8.38, three females). They were instructed
to respond to the presence of a face (target) as quickly and
accurately as possible by hitting the enter key on a standard
keyboard.

For the binary classification of target versus nontarget, we
consider two different problems in relation to the behavioral
performance.

1) The binary classification of target versus nontarget inde-
pendent of the behavioral performance (target versus
nontarget). It is the classification of the ERPs cor-
responding to every target and nontarget. The EEG
database contains 1200 patterns representing the target
(faces) and 10800 for the nontarget (cars), for each
subject.

2) The binary classification of target versus nontarget
dependent of the behavioral performance (target hit
versus nontarget hit). In this case, we consider only the
patterns that correspond to a correct behavioral response,
i.e., the subject presses a button when there is a target
and does not press a button when there is no target. The
analysis of a behavioral response is considered between
0.2 and 1 s after the presentation of a stimulus. The
number of patterns for both classes and for each subject
is detailed in Table II.
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Fig. 2. Examples of visual stimuli [(left) target versus (right) nontarget].

B. Experiment 2

Visual stimuli consisted of 900 color images
(683 × 384 pixel). These images were taken from Insurgency:
Modern Infantry Combat (Insurgency Team), a total
conversion modification of the video game Half-Life 2
(Valve Corporation). The realistic images were separated
into target scenes that contained a person (300 images) and
nontarget scenes that did not contain a person (600 images).
Several examples of the images that were presented during
the experiments are shown in Fig. 2. The images were
centered on the screen (visual angle ≈ 26°) and presented
for 100 ms with no interval between subsequent images.
The RSVP task was separated into different blocks of 5 s.
Participants were instructed to hold their blinks to avoid eye
blink artifacts in the EEG data. They had to count the number
of times they saw a target (image with a person) and report
the number at the end of the block. The probability of a target
was set 0.10. Each block contained ten different images,
one of them being a target and the experiment consisted of
5000 images. Ten healthy subjects (mean = 19.5, sd = 1,
five females) participated in the experiment. Each session
contained 5000 images. Therefore, the database contains
1000 patterns representing the target (someone in the scene)
and 9000 for the nontarget class (nobody in the scene), for
each subject.

C. Experiment 3

The third experiment was identical to the second experi-
ment, except that stimuli were presented for 200 ms. The same
subjects of Experiment 2 participated in the RSVP task in two
sessions. Each session contained 2000 images. This database
contains 400 patterns representing the target (someone in the
scene) and 3600 for the nontarget class (nobody in the scene),
for each subject.

D. Signal Acquisition

The EEG signal was recorded from 32 Ag/AgCl sintered
sensors mounted in an elastic headcap (Biosemi ActiveTwo).
The 32 electrodes were placed according to a subsampled
version of the 10–10 system [54]. The horizontal and vertical
electrooculograms were recorded from sensors placed 1 cm
lateral to the external canthi (left and right) and above and
below each eye, respectively. The data were sampled at

512 Hz and referenced offline to the signal recorded from the
mastoids.

E. Signal Preprocessing

The signal was first bandpassed filtered (Butterworth filter
of order 4) with cutoff frequencies at 1 and 10.66 Hz. Then,
the signal was downsampled to obtain a signal at a sampling
frequency equivalent to 32 Hz. This sampling frequency was
used by the winning team of the MLSP competition 2010 [55].
The resulting signal used for target detection included ampli-
tude values (in microvolts) between 0 and 812.5 ms after the
start of a visual stimulus (26 sampling points, N1 = 26), dur-
ing which we assumed that the targets should evoke enhanced
ERP responses (e.g., P300).

V. RESULTS

A. Experiment 1

The performance for target detection are presented in two
different ways. First, the methods are assessed in their ability
to detect the type of stimulus (car or face). In this case, the
ground truth is objective, based on the presentation of cars
and faces (independent on behavioral performance). Second,
the methods are assessed in their ability to detect the type
of stimulus based on the behavioral decision of the observer.
For this condition, the ground truth is subjective, based on
the subjects identification of cars and faces (dependent on
behavioral performance).

1) Performance Classifying Stimulus: The AUC for each
subject, the mean and standard deviation (SD) across subjects
are presented in Table III. The last row of the table shows
the subjects’ behavioral performance. The best mean accuracy
was achieved with the CNN (MLPcnn) with a mean AUC
of 0.861 ± 0.073. There was a significant difference across
the 12 methods (Friedman’s test, p < 10e − 5). After
posthoc analysis with a false discovery rate correction, the best
preprocessing method was CNN, followed by xDAWN and
the absence of preprocessing method (there was no difference
between xDAWN and the absence of spatial filters), and CSP
(Wilcoxon sign rank test p < 0.01). For the classification
step, MLP was better than BLDA (p < 10e − 5) and SVM
(p < 10e − 5), and there was no difference between BLDA
and SVM. The evolution of the MSE and the AUC across
the different epoch during the neural network training on
the validation database is presented in Fig. 3. A pairwise
t-test indicated that the performance based on the maximiza-
tion of the AUC was superior to the minimization of MSE
(t31 = 11.803, p < 10e − 5). The mean AUC performance
based on the AUC maximization and MSE minimization is
0.825 ± 0.083 and 0.764 ± 0.105, respectively. The training
step converges after 4.5 ± 2.7 iterations for the maximization
of the AUC whereas it requires 42.7 ± 7.7 iterations for MSE
minimization.

The resulting spatial filters of a representative subject
(Subject 2) are depicted as topographic maps of the scalp in
Fig. 4. The different gray values correspond to the weight
values of the different spatial filters. For MLPcnn, each map
corresponds to the values of the weights that are used between
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TABLE III

EXPERIMENT 1: AUC FOR EACH SUBJECT AND EACH METHOD (TARGET VERSUS NONTARGET). FOR EACH SUBJECT,

THE BEST RESULT IS DISPLAYED IN BOLD CHARACTERS

Fig. 3. (a) MSE and (b) AUC evolution across epochs during the neural network training on the validation database (Experiment 1—stimulus classification).

L0 and L1. The topographic maps show the differences
between the spatial filters obtained with CNN (MLPcnn),
xDAWN, and CSP. It is important to stress that these plots
represent the weights on each electrode of the spatial filters
and do not represent the spatial distribution of the ERP across
the scalp. For the spatial filters obtained with the CNN, the
order of the filters has no meaning, contrary to xDAWN
and CSP as described in Sections II-A and II-B. The first
spatial filter of xDAWN corresponds to the maximization
of the SSNR and represents the best filter for maximizing
the SSNR.

2) Performance Predicting Single-Trial Behavioral
Decisions: The AUC for each subject, the mean and
SD across subjects are presented in Table IV. The best
mean accuracy was achieved with MLPcnnwith an AUC of
0.932 ± 0.034. There was a significant difference across the
12 methods (Friedman’s test, p < 10e − 5). After posthoc
analysis with a false discovery rate correction, we find
the same pattern of performance than for the classification
of the stimuli, the best preprocessing method was CNN,
followed by xDAWN and the absence of preprocessing
method (no difference between xDAWN and the absence of
spatial filters), and CSP (Wilcoxon sign rank test p < 0.01).
For the classification step, MLP was better than BLDA
(p < 10e −5), SVM was also better than BLDA (p < 0.005),
and there was no difference between MLP and SVM. Like

for performance classifying stimulus, the evolution of the
MSE and the AUC during the training of the different neural
networks for predicting single-trial behavioral decisions is
given in Fig. 5. The performance based on the maximization
of the AUC was superior to the minimization of MSE
(t31 = 6.939, p < 10e − 5). The mean AUC performance
based of the AUC maximization and MSE minimization is
0.895 ± 0.058 and 0.864 ± 0.075, respectively. The training
step converges after 7.8 ± 6.4 iterations for the maximization
of the AUC whereas it requires 33.54±9.3 iterations for MSE
minimization.

3) Differences Between Classifying Stimulus and Behavioral
Decisions: To compare the effect of the type of ground truth
(subjective based on behavioral performance and objective
based on the stimulus types) and spatial filtering, a repeated-
measures two-way ANOVA was performed and indicated an
effect on both the type of ground truth (F(1, 7) = 14.63,
p < 10e − 2) and the spatial filters (F(3, 21) = 35.93,
p < 10e − 7) but there was no interaction between them
(F(3, 21) = 0.73, p = 0.54). Similarly, a repeated-measures
two-way ANOVA was performed to compare the effect of the
type of ground truth and classifier. It revealed an effect on
the type of ground truth (F(1, 7) = 14.63, p < 10e − 2),
the spatial filters (F(2, 14) = 10.97, p < 10e − 2), and on
the interaction (F(2, 14) = 9.84, p < 10e − 2). These results
show that the ground truth for the performance estimation of
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Fig. 4. Example of spatial filters obtained with MLPcnn, MLPxdawn, and MLPcsp for the subject 2 (all units are arbitrary).

TABLE IV

EXPERIMENT 1: AUC FOR EACH SUBJECT AND EACH METHOD (TARGET HIT VERSUS NONTARGET HIT).

FOR EACH SUBJECT, THE BEST RESULT IS DISPLAYED IN BOLD CHARACTERS

single-trial detection has a significant impact. In addition, it
revealed that the difference obtained between the two ground
truths is due to the classifier and not the spatial filtering
method.

B. Experiment 2

The methods are assessed in their ability to detect the
type of stimulus (images containing a person versus images
containing nobody). There was a significant difference across
the 12 methods (Friedman’s test, p < 10e − 5). After
posthoc analysis with a false discovery rate correction, the

best preprocessing method was xDAWN, followed by CNN,
the absence of preprocessing method, and CSP (Wilcoxon
sign rank test p<0.01). For the classification step, MLP was
better than BLDA ( p=0.0115), and there was no difference
between MLP and SVM. The AUC for each subject, the mean
and SD across subjects are presented in Table V. The best
mean accuracy was achieved with BLDAxdawn with an AUC
of 0.869 ± 0.051.

The evolution of the MSE and the AUC across the different
epoch during the neural network training is shown in Fig. 6.
A pairwise t-test indicated that the performance based on the
maximization of the AUC was superior to the minimization
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Fig. 5. (a) MSE and (b) AUC evolution across epochs during the neural network training on the validation database (Experiment 1—behavioral response
classification).

TABLE V

EXPERIMENT 2: AUC FOR EACH SUBJECT AND EACH METHOD (TARGET VERSUS NONTARGET).

FOR EACH SUBJECT, THE BEST RESULT IS DISPLAYED IN BOLD CHARACTERS

of MSE (t39 = 14.790, p < 10e − 5). The mean AUC
performance based of the AUC maximization and MSE min-
imization is 0.791 ± 0.111 and 0.726 ± 0.119, respectively.
The training step converges after 4.0 ± 2.7 iterations for the
maximization of the AUC whereas it requires 41.7 ± 11.2
iterations for MSE minimization.

C. Experiment 3

As in Experiment 2, the analytical techniques were assessed
in their ability to detect the type of stimulus (images containing
a person versus images containing nobody). By considering the
AUC, there was a significant difference across the 12 methods
(Friedman’s test, p < 10e − 5). After posthoc analysis with a
false discovery rate correction, the best preprocessing method
was xDAWN, followed by CNN, the absence of preprocessing
method, and CSP (Wilcoxon sign rank test p < 0.01). For the
classifier only, MLP was better than BLDA ( p = 0.0013),
and there was no difference between MLP and SVM. The
AUC for each subject, the mean and SD across subjects are
presented in Table VI. The best mean accuracy was achieved
with BLDAxdawn with an AUC of 0.854 ± 0.039.

The evolution of the MSEand the AUC across the different
epoch during the neural network training on the validation
database is presented in Fig. 7. A pairwise t-test indicated
that there was no difference in performance between the max-
imization of the AUC and the minimization of MSE. The mean

AUC performance based of the AUC maximization and MSE
minimization is 0.773±0.075 and 0.759±0.086, respectively.
The training step converges after 6.7 ± 4.6 iterations for the
maximization of the AUC whereas it requires 37.5 ± 12.4
iterations for MSE minimization.

D. Performance Across Database

By considering the results obtained from the three exper-
iments for the classification of the stimulus, we observed a
significant difference across the 12 methods (Friedman’s test,
p < 10e − 5). After Wilcoxon sign rank tests, CNN was the
best preprocessing step, followed successively by xDAWN,
the absence of spatial filtering, and CSP ( p < 10e − 4). For
classifiers, MLP was better than both SVM (p < 10e −5) and
BLDA (p < 10e − 5), and there was no difference between
SVM and BLDA.

VI. DISCUSSION

In this paper, we addressed three main issues. First, we
investigated the efficacy of a CNN based on the maximization
of the AUC for single-trial ERP detection in three RSVP
tasks. This method embeds both the spatial filtering and the
classification steps and outperforms the other methods in some
conditions (BLDA and SVM with or without spatial filters,
and MLP). Second, we have shown that spatial filtering is not
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Fig. 6. (a) MSE and (b) AUC evolution across epochs during the neural network training on the validation database (Experiment 2).

Fig. 7. (a) MSE and (b) AUC evolution across epochs during the neural network training on the validation database (Experiment 3).

TABLE VI

EXPERIMENT 3: AUC FOR EACH SUBJECT AND EACH METHOD (TARGET VERSUS NONTARGET).

FOR EACH SUBJECT, THE BEST RESULT IS DISPLAYED IN BOLD CHARACTERS

a necessary component of the system but it can improve the
overall performance. Finally, we have shown that the estima-
tion of the ground truth based on behavioral performance has
a significant effect on single-trial detection performance. The
implications of these results are described thereafter.

A CNN based on the maximization of the AUC is an
efficient approach for the classification of ERPs during RSVP
task because it does not require prior knowledge about the type
of spatial filters to consider and the association between the
classifier and the spatial filters. Thanks to the maximization
of the AUC [56], this approach avoids pitfalls due to the
unbalanced distribution of the classes in the data set and

allows to maximize the AUC on the test data sets. Despite the
advantages of this method, the choice of the number neurons,
and the number of spatial filters, like for the other methods,
requires a priori information from separate experiments or
previously published data. Nevertheless, if this information is
available to the experimenter, as it was here, then the results
observed here indicate that the CNN approach can be effective
at single-trial classification of ERPs in a difficult task.

The present observation that the efficiency of single-trial
detection was dependent on both the spatial filtering approach
and classifier demonstrates the importance of careful consider-
ation of all components of system architecture is critical. Each
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component of the system requires special attention to achieve
optimal classifier performance given the quality of the data (the
number of samples, the type of noise), and spatial filtering is
no exception. One challenge is to design a robust strategy that
keeps a coherent architecture between the different processing
steps and is not solely focused on one stage (e.g., classifica-
tion [57]). In several previous EEG detection studies [21], [22],
the focus was toward feature extraction methods like spatial
filtering and classifiers that were often linear (e.g., LDA). The
conclusion based on these studies was that spatial filtering
was required to achieve the best performance. However, we
observed that an MLP or an SVM does not require spatial
filtering to achieve comparably good performance (AUC>0.8
with MLP∅). Indeed, these classifiers can provide better results
than when using CSP as a preprocessing step. In addition,
spatial filtering allows reducing the number of features hence
increasing the processing speed for both training and testing
the classifier. Although the number of spatial filters and the
number of neurons in the hidden layer were selected based
on previous studies [26] and were held constant across the
methods, the choice of the parameters and the number of
available samples for training might influence the overall
results.

Our results were observed in the context of difficult tasks,
the difficulty of which was driven by the nature of the stimuli.
This difficulty was highlighted by the results of Experiment 1,
in which the mean AUC of the behavioral performance was
0.886 and classifier performance also differed between the
ground truth based on the stimuli and the ground truth based on
the behavioral performance. In difficult tasks, the behavioral
and neural responses to stimuli from one class may not always
be consistent and distinct from the responses to stimuli from
the other class. For example, traditional ERP studies have
shown that targets that are presented in difficult RSVP tasks
may only elicit a P3 when they are consciously reported [58].
In the present context, this suggests that in Experiment 1,
where the task was difficult, the missed targets may have
elicited a smaller P3, if any at all. Thus, when classification
was based on the ground truth, the target class likely included
both robust P3s and attenuated P3s (e.g., amplitude and latency
variation). The resulting increased within-class variability and
reduced interclass variability was a likely source of the lower
classifier performance. On the other hand, it is possible that
the difference in performance was due to the inclusion of only
those trials with the motor response. However, because the sig-
nal was bandpassed between 1 and 10.66 Hz, which excluded
a large part of the motor related mu rhythm(8–13 Hz), it is
unlikely. Although a difference was observed between motor
and nonmotor tasks from 550 through 700 ms in [15], the
signal was not bandpassed the same way as in this paper.

An additional aspect of the tasks used here is that the target
stimuli were very different from trial to trial. For instance,
in Experiments 2 and 3, the targets were people to detect
was presented at different locations, orientations, and lighting
conditions. This variability within the target class can affect
both the reaction time for behavioral performance and also
the latency of ERP components like the P300 [59]. More
importantly, this variability within a class can affect classifier

performance [5]. While the tasks used here are different
than the classic oddball task that repeats the same target
stimulus [6], the RSVP tasks used here may be more relevant
for more real-world target detection tasks [18]. For example,
in a real RSVP applications for threat detection, the meaning
of the target can change over time because of changes in the
local target probability within the stimulus sequence. This
variability can modulate the ERP characteristics (amplitude
and latency) [27]. Therefore, the classifier and the spatial
filters should be tuned to model this variability to become
invariant to these ERP deformations. CNNs have been already
successfully applied in these kinds of situations [45], [49],
[60], and the present results generalize this approach to
difficult RSVP tasks.

Whereas the obtained AUC with the different methods
is consistent with other studies [11], [20], the performance
is not optimal. Two main reasons may explain the level
of performance. First, the subject’s performance is directly
related to the visual stimuli, his/her attentional state, and
the parameters of the RSVP paradigm (the stimulus onset
asynchrony, the interstimulus interval, and the target prob-
ability). Different task parameters, (e.g., less noise in the
images, slower RSVP rate) may result in better behavioral
and classifier performance. Second, the level of performance
can be explained by the assumptions made with the methods.
For example, it was assumed that the spatial distribution of
the ERP stays stable over time. However, this distribution may
change as the subject gains practice on the task or experiences
fatigue, and incremental methods should be considered to
take into account this effect [38]. Although a BCI should be
robust against the dynamic fluctuations in brain signals, the
choice of a completely adaptive system or an invariant system
remains to be determined. For all these reasons, new efficient
machine learning techniques and comfortable paradigms that
elicit consistent EEG responses over time need to be identified.

Finally, although BCIs have been mainly applied to disabled
persons, the results obtained in this paper are relevant for both
disabled and healthy users. For example, RSVP paradigms can
be used for spelling tasks because they do not require eye
movements, which is advantageous for patient groups that have
deficits in oculomotor control [61]. In addition, RSVP tasks are
also highly relevant for healthy users who, for example, search
for target objects in large scenes (e.g., satellite image analysts).
However, even though the performance of the classifiers is
relatively high, efficient single-trial detection remains a dif-
ficult problem. Indeed, further improvements to classification
approaches and BCI paradigms that are robust to a variety of
testing conditions are required before these systems can be
deployed with confidence in real-world scenarios.

VII. CONCLUSION

In this paper, we have proposed a CNN with training based
on the maximization of the AUC for single-trial detection
of ERP in three RSVP tasks. We have compared this sys-
tem with other state-of-the-art methods by decomposing the
spatial filtering step from the classification step. The results
highlighted the impact of several supervised spatial filtering
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methods and their relationships with classifiers. These methods
allowed enhancing and reducing the signal features to facilitate
the classification of EEG single-trials in a difficult RSVP task.
The obtained results suggest that a CNNs can be effective
when used for the detection of EEG single-trials as it combines
spatial filtering and classification in an united way. In addition,
our results show that this strategy can be more efficient
than separating the different steps, i.e., spatial filtering and
classification. It is an open question for future studies whether
other neural network architectures can better detect single-trial
ERP responses.
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