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Abstract

■ An organism’s current behavioral state influences ongoing
brain activity. Nonhuman mammalian and invertebrate brains
exhibit large increases in the gain of feature-selective neural
responses in sensory cortex during locomotion, suggesting that
the visual system becomesmore sensitive when actively exploring
the environment. This raises the possibility that human vision is
also more sensitive during active movement. To investigate this
possibility, we used an inverted encoding model technique to es-
timate feature-selective neural response profiles from EEG data
acquired from participants performing an orientation discrimina-
tion task. Participants (n= 18) fixated at the center of a flickering
(15 Hz) circular grating presented at one of nine different orien-
tations andmonitored for a brief shift in orientation that occurred
on every trial. Participants completed the task while seated on a

stationary exercise bike at rest and during low- and high-intensity
cycling. We found evidence for inverted-U effects; such that the
peak of the reconstructed feature-selective tuning profiles was
highest during low-intensity exercise compared with those esti-
mated during rest and high-intensity exercise. When modeled,
these effects were driven by changes in the gain of the tuning
curve and in the profile bandwidth during low-intensity exercise
relative to rest. Thus, despite profound differences in visual path-
ways across species, these data show that sensitivity in human
visual cortex is also enhanced during locomotive behavior. Our
results reveal the nature of exercise-induced gain on feature-
selective coding in human sensory cortex and provide valuable
evidence linking the neural mechanisms of behavior state
across species. ■

INTRODUCTION

The behavioral state of an organism has dramatic effects
on sensory evoked brain responses. Clear demonstra-
tions of these effects come from studies that compare
visual cortical activity in awake and anesthetized animals
(Sellers, Bennett, Hutt, Williams, & Fröhlich, 2015;
Greenberg, Houweling, & Kerr, 2008). Recent neural
recordings in awake and behaving animals and inverte-
brates also reveal robust modulation of neural activity
as a function of behavioral state, with evidence that loco-
motion can influence response gain in visual cortex and
subcortical structures (Fu et al., 2014; Ayaz, Saleem,
Schölvinck, & Carandini, 2013; Polack, Friedman, &
Golshani, 2013; Saleem, Ayaz, Jeffery, Harris, & Carandini,
2013; Keller, Bonhoeffer, & Hübener, 2012; Chiappe,
Seelig, Reiser, & Jayaraman, 2010; Maimon, Straw, &
Dickinson, 2010; Niell & Stryker, 2010). In the human,
not only is cognitive performance influenced by changes
in behavioral state that occur with physical activity
(Chang, Labban, Gapin, & Etnier, 2012; Lambourne,
Audiffren, & Tomporowski, 2010), but a number of stud-
ies have used EEG to reveal modulation of brain activity
during exercise (Cheron et al., 2016). These investigations
indicate that physical activity impacts upon global oscilla-
tory brain activity (Ludyga, Hottenrott, & Gronwald, 2016;

Hottenrott, Taubert, & Gronwald, 2013; Fumoto et al.,
2010; Bailey, Hall, Folger, & Miller, 2008) as well as patterns
of activation that relate to specific stages of cognitive
function (Bullock, Cecotti, & Giesbrecht, 2015; De Sanctis,
Butler, Malcolm, & Foxe, 2014; Pontifex & Hillman, 2007;
Grego et al., 2004).

Although there is evidence that locomotion may act as
a gain control mechanism in mouse visual cortex (Wilson
& Glickfeld, 2014; Ayaz et al., 2013; Polack et al., 2013;
Keller et al., 2012; Niell & Stryker, 2010), other evidence
suggests that the mechanism is not consistent across all
cell types or at all stages of the visual pathway (Erisken
et al., 2014; Saleem et al., 2013). Recent data from mouse
auditory cortex also suggest a nonlinear “inverted-U”
relationship (Yerkes & Dodson, 1908) between the inten-
sity of physiological arousal and the neuronal response,
such that sensory responses were largest and most reliable
during moderate arousal when compared with at rest and
high arousal (McGinley, David, & McCormick, 2015). Given
the vast differences between rodent and primate visual
pathways, there is no a priori reason to expect that the hu-
man visual system should exhibit the same response to
physical activity that has been observed in other species
(Laramée & Boire, 2015). However, recent data collected
from human participants revealed exercise-induced in-
creases in the scalp-recorded visual evoked P1 ERP during
moderate-intensity exercise when compared with rest and
intense exercise (Bullock et al., 2015). These data suggest
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that physical activity may induce sensory gain in a manner
consistent with the inverted-U model, but they do not
inform us of the specific nature of the gain and how this
impacts upon feature-selective coding in sensory cortex.
Thus, the mechanisms that mediate changes in visual
processing that occur with physical activity in human visual
cortex are unclear.

Here we tested the effects of physical activity-induced
changes in behavioral state on feature-selective, popula-
tion level neural encoding of visual information in the
human brain. To estimate feature-selective response
profiles, we applied a computational technique that uses
spatially specific patterns of neural activity recorded via
noninvasive human neuroimaging techniques. This com-
putational technique, referred to as an inverted encoding
model (IEM) has been applied to the BOLD signal mea-
sured with fMRI to estimate feature and spatially selective
neural response profiles in retinotopically organized
visual cortex (Sprague, Saproo, & Serences, 2015; Brouwer
& Heeger, 2009, 2011, 2013; Serences & Saproo, 2012).
More recently, this method has been used with scalp-
recorded EEG to uncover the temporal dynamics of feature-
selective processing in the human brain (Garcia, Srinivasan,
& Serences, 2013) and the contents of spatial working
memory (Foster, Sutterer, Serences, Vogel, & Awh, 2016).
We recorded EEG while participants performed an orienta-
tion discrimination task during three different behavioral
states: at rest and during low- and high-intensity bouts of
cycling exercise. We then employed an IEM approach to
reconstruct orientation-selective population level response
profiles for each condition. Given that previous work with
both humans and mice demonstrates inverted-U shaped
gain in cortex as a function of exercise intensity (Bullock
et al., 2015; McGinley et al., 2015), we predicted that similar
U-shaped effects may also occur in the present data. Consis-
tent with our predictions, we found evidence for multiplica-
tive gain during low-intensity exercise when compared with
rest and high-intensity exercise. Furthermore, we observed
reduced tuning profile bandwidth during low-intensity exer-
cise relative to rest. These data reveal the effects of physical
activity on feature-selective coding in human sensory cortex
and provide valuable evidence linking the neural mecha-
nisms of behavior state across species.

METHODS

Participants

Eighteen adult volunteers from the University of California,
Santa Barbara, community took part in the study, either in
exchange for course credit or for financial compensation of
$20 per hour. The sample size was determined based on
previous studies that have applied an IEM approach to
EEG data (Foster et al., 2016; Garcia et al., 2013) as well
as investigations of exercise effects on cortical activity
(e.g., Ludyga et al., 2016; Hottenrott et al., 2013; Bailey
et al., 2008). Demographic and physiological data are

reported in Table 1. All participants reported having normal
vision. All participants completed the Physical Activity
Readiness Questionnaire (National Academy of Sports
Medicine) to determine their eligibility to participate in aer-
obic activity. Informed consent was obtained before the
start of the experiment. All procedures were approved by
the University of California, Santa Barbara, Human Subjects
Committee and the U.S. Army Human Research Protection
Office.

Visual Stimuli

Visual stimuli consisted of a circular, square wave grating
(spatial frequency of two cycles per degree, subtending
7° of visual angle) superimposed with a central fixation
point (subtending 0.5° of visual angle). Stimuli were pre-
sented on an 19-in. ViewSonic E90f CRT monitor with
custom scripts that utilized the Psychophysics Toolbox
for MATLAB (Brainard, 1997). Participants viewed the
screen at a distance of 110 cm. The eye-tracker was posi-
tioned 60 cm from the eye.

Stationary Bike Setup

The stationary bike was a CycleOps 400 Pro Indoor Cycle
(Saris Cycling Group, Madison, WI). T2+ Profile Design
Aero Bars (Profile Design, Long Beach, CA) were at-
tached to the handlebars and a Logitech Trackball Mouse
(Logitech, Newark, CA) was fixed to the end of the bars.
The equipment setup is shown in Figure 1A. The addition
of the aero bars allowed participants to lean their body
weight onto the elbow pads, leaving their hands free to
press mouse buttons during the experiment. The bars also
helped stabilize the participant and reduce movement
of the head and upper body, which is important for re-
ducing the motion artifact during EEG recording. Trainer
Road software (Trainer Road, Reno, NV) was used to con-
trol the stationary bike, and a CycleOps wireless heart
rate monitor was used to monitor heart rate. Our equip-
ment setup is based on the setup described in Pontifex
and Hillman (2007), and we have used a similar setup
in two previous studies (Bullock et al., 2015; Bullock &
Giesbrecht, 2014).

Table 1. Mean and Standard Error Values for Demographic and
Cardiovascular Data

Measure Mean Participant Information

n 18 (9 female)

Age (years) 19.94 (.35)

Height (cm) 172.57 (10.64)

Weight (kg) 69.10 (12.95)

Resting heart rate (BPM) 66 (6.26)

VO2max (ml/kg/min) 38.52 (9.61)
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Procedure

Each participant volunteered for two sessions, a pretest-
ing session and the main testing session. The pretesting
session was conducted ∼1 week before the main session.
The pretesting served four key purposes. First, the eye-
tracker (Eyelink 1000 Plus, SR Research, Ltd., Mississauga,
Ontario, Canada) was tested to ensure that each partici-
pant’s eye position could be tracked successfully in re-
mote mode. Second, the level of task difficulty for the
orientation task was determined for each individual using
the method of constant stimuli. Third, each participant’s
VO2max was estimated using the Astrand–Rhyming sub-
maximal bike test (Åstrand & Ryhming, 1954). Fourth,
seat height and bar position was set to ensure that each
participant was comfortable on the stationary bike and
able to maintain a steady pedaling cadence at ∼50
revolutions per minute (RPM).
At the start of the pretesting session, participants

mounted the bike and were familiarized with the task
and given blocks of practice trials. They then completed
a method of constant stimuli procedure consisting of 54
trials of the rotation offset task (see main testing session
procedures) presented at six different difficulty levels
(ranging between 1° and 8° of rotation offset) in a fully
randomized order. This procedure lasted ∼40 min and
was completed at rest (not pedaling). A Weibull function
was then fit to the data to estimate an orientation deviation
that results in 80% accuracy. Participants then completed
the Astrand–Ryming submaximal bike test (Bullock &
Giesbrecht, 2014; Åstrand & Ryhming, 1954). During the
test, participants were coached to minimize upper body
and head movement, and they were instructed to maintain
a smooth pedaling cadence of 50 RPM in time to a metro-
nome that sounded at 100 beats per minute (BPM). The

values obtained from this procedure provided an estimate
of maximal oxygen consumption (VO2max).

In the main testing session, EEG data were recorded for
each participant using a Brain Products ActiCHamp system
(Brain Vision LLC, Morrisville, NC) consisting of 64 active
electrodes arranged in an actiCAP elastic cap and placed
in accordance to the 10–20 System. The TP9 and TP10 elec-
trodes were adhered directly to the right and left mastoids.
Data were sampled at 500 Hz and referenced to the aver-
age mastoid signal. At the beginning of each investigation,
all impedances were <15 kΩ. Participants were then famil-
iarized with the Ratings of Perceived Exertion (RPE) Scale
(Borg, 1970). RPE is a subjective rating of the intensity of
physical sensations a person experiences during physical
activity, including increased heart rate, respiration rate,
muscle fatigue, and physical discomfort. Participants
reported their RPE throughout the experiment by viewing
the Borg scale and reporting a number between 6 (no
exertion) and 20 (maximum exertion).

After the EEG electrodes and wireless heart rate mon-
itor were mounted, participants then mounted the sta-
tionary bike and completed trials of the rotation offset
task (Figure 1B). Each trial began with the participant fix-
ating on a centrally presented fixation cross. The trial was
initiated by pressing the right mouse button, and after a
brief pause (500 msec), a circular grating stimulus ap-
peared and cycled on/off with a blank gray screen at
15 Hz for 3 sec. The 15-Hz flicker was intended to induce
a steady-state response that served as the basis for our anal-
ysis. The grating was composed of alternating black and
white bars presented at one of nine different orientations,
ranging from 0° to 160°. During the trial, the grating rotated
either counterclockwise or clockwise for three stimulus cy-
cles, and at the termination of the trial, the participant

Figure 1. Experimental methods. (A) Equipment setup. (B) Example of rotation offset detection task. Participants fixated at center for the duration of
each trial and indicated at the end whether the target rotation offset was clockwise or counterclockwise.
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pressed a button to indicate the direction of the rotation
offset. The size of the target rotation offset was determined
on an individual basis according to each participant’s 80%
performance threshold calculated using the method of
constant stimuli during the pretesting session. The target
occurred toward the end of the trial (randomized between
2000 and 3000 msec) on 80% of trials so as to minimize
contamination of the orientation-selective response pro-
file. On 20% of trials, the target occurred earlier in the trial
(between 133 and 2000 msec) to ensure that participants
did not develop a strategy of only attending to the final
1000 msec of the trial. Eye position was sampled at
500 Hz throughout each trial using an Eyelink 1000 plus
eye-tracker (SR Research, Ltd., Mississauga, Ontario,
Canada) in “remote” mode. If the participant blinked or
moved their eyes more than 1.75° away from the central
fixation cross, the trial was immediately terminated and
the message “Broken Fixation!” appeared on the screen.
Aborted trials were appended to the end of each block,
thus ensuring that each participant completed the same
number of trials in each condition. Head position was also
sampled at 500 Hz throughout each trial by logging the po-
sition of a small target sticker placed on the participant’s
forehead, relative to the position of the eye-tracker.

Each participant performed the orientation task at rest
and during low- and high-intensity bouts of cycling exer-
cise. At rest, the participant did not pedal; during low-
intensity exercise, the resistance on the bike was fixed
at a minimal level (50 W); during high-intensity exercise,
the resistance was set at a level that participants self-
reported to be “somewhat hard” (12–14 on the RPE Scale;
Borg, 1970). Participants were instructed to pedal at
50 RPM to the beat of a metronome to keep cadence con-
sistent across participants and conditions. Exercise condi-
tion order was fully counterbalanced across the sample.
Participants performed the task until they had completed
36 unbroken trials per block and 10 blocks per condition
(broken trials per block [mean ± SEM]: rest: 12.9%± 1.48,
low: 18.47% ± 3.50, high: 19.12% ± 3.84).

Each condition took ∼40 min to complete, excluding
warm-up and cool-down time in the low- and high-
intensity exercise conditions. Before the first active con-
dition (either low- or high-intensity exercise, depending
on counterbalancing order), participants warmed up for
∼5 min while being given further coaching to ensure that
they maintained a smooth pedaling cadence to the beat
of the metronome and minimized head and body move-
ment. Care was taken to ensure that heart rate returned
to within 15 BPM of resting heart rate after the comple-
tion of one active condition before starting the next con-
dition. The entire EEG session took ∼5 hr.

EEG Data Preprocessing

MATLAB (version 2013b, Massachusetts, The MathWorks,
Inc., Natick, MA) was used for offline processing of the
EEG data, along with the EEGLAB toolbox (Delorme &

Makeig, 2004). The continuous data were low-pass fil-
tered at 30 Hz to remove high-frequency muscle move-
ment artifacts (Bullock et al., 2015; De Sanctis et al., 2014;
Pontifex & Hillman, 2007) and high pass filtered at 4 Hz
to remove low-frequency activity caused by sweating. The
data were epoched between −0.5 and 2.5 sec, trials with
blinks/broken fixations were removed, and the data were
then submitted to a threshold rejection routine, whereby
any electrode with a kurtosis distribution exceeding 5
standard deviations from the mean was excluded (mean
number of electrodes excluded: rest 3.9 ± .4 electrodes;
low 3.5 ± .5 electrodes; high 3.4 ± .4 electrodes) and
trials exceeding ±150 μV in remaining channels were ex-
cluded (mean number of trials excluded: rest 4.4 ± 2.2;
low 10.9 ± 5.3; high 4.3 ± 2.3). Trials with early target
onsets (<2000 msec) were excluded, and the remaining
trials were cropped to precisely 2 sec (30 complete stim-
ulus presentation cycles at 15 Hz), thus removing any
contamination of the neural response by the target rota-
tion onset. The final step of preprocessing involved con-
verting the 2 sec of pretarget data from the included
electrodes and each included trial into the single-sided
Fourier spectrum using the standard fast Fourier trans-
form function in MATLAB (fft.m).

Pattern Classification Analysis

To determine the extent to which the stimulus evoked
responses carried information about orientation, a linear
discriminant classifier was trained on the estimates of
power and phase angle based on the real and imaginary
components of the Fourier coefficients at the stimulation
frequency (i.e., 15 Hz). Leave-one-out cross-validation
was used to train and test the classifier. Classifier perfor-
mance was measured by converting correct classifications
to proportion correct (n correct classifications/total clas-
sifications) and comparing to chance (1/9 = 0.111). Hy-
pothesis tests were evaluated against an empirical null
distribution estimated using resampling (see Hypothesis
Testing).

Inverted Encoding Model

We used an IEM to reconstruct orientation-selective tun-
ing profiles based on the spatial distribution of stimulus-
evoked activity across the scalp. The goal of the first part
of the model is to estimate the extent to which the linear
combination of a priori canonical responses (i.e., a basis
set) captures the underlying structure in the observed
data. The goal of the second part is to determine how
much information the response pattern contains about
the stimulus features, to the extent that it supports an
accurate stimulus reconstruction. This essentially allows
the overall shape of the reconstruction to be quantified.
The method adopted here was initially used in fMRI stud-
ies (Ester, Sprague, & Serences, 2015; Serences & Saproo,
2012; Brouwer & Heeger, 2009, 2011; Naselaris, Kay,
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Nishimoto, & Gallant, 2011) and recently applied to scalp-
recorded EEG (Foster et al., 2016; Garcia et al., 2013). Like
decoding (i.e., pattern classification), IEMs involve both
training and testing. Here, training was performed using
all trials but one, and testing was performed on the single
trial left out. More specifically, for a given individual and
condition,m represents the number of EEG electrodes in
each data set, n1 represents the number of trials in the
training set (∼281 trials), and n2 represents be the num-
ber of trials in the testing set (1 trial). Let j be the number
of hypothetical orientation channels (C1, j × n1), com-
posed of half-sinusoidal functions raised to the seventh
power as the basis set. In the current study, nine equally
spaced orientations were used (i.e., j = 9). Raising the
functions to the seventh power was intended to approxi-
mate the orientation bandwidth of orientation-selective
cells in primate visual cortex (Gur & Snodderly, 2007;
Ringach, Bredfeldt, Shapley, & Hawken, 2002; Ringach,
Shapley, & Hawken, 2002). For each cross-validation step,
the data were separated into independent training and
testing sets. For each train–test iteration, B1 (m× n1) rep-
resents the training set and B2 (m × n2) the test set. A
standard implementation of the general linear model
was then used to estimate the weight matrix (W, m × j)
using the basis set (C1). More specifically, using the
general linear model

B1 ¼ WC1 (1)

Then, the ordinary least squares estimate of W can be
computed as

Ŵ ¼ B1CT
1 C1CT

1

� �−1
(2)

Using the estimated weight matrix (Ŵ, Equation 2) and
the test data (B2), the channel responses C2 ( j × n2)
can be estimated by

Ĉ2 ¼ Ŵ
T
Ŵ

� �−1
Ŵ

T
B2 (3)

After the Ĉ2 was solved for each orientation, the channel
response function on each trial was then circularly shifted
to a common stimulus-centered reference frame, and the
centered response functions were averaged. Thus, by
convention, the 0° point on the x axis refers to the orien-
tation of the stimulus that evoked the response profile.
The final step was then to square the absolute value of
the stimulus centered response function to obtain a
measure of power (μV2).
To investigate the source of potential feature-selective

modulations, we fit a von Mises distribution to the ob-
served data. Doing so allowed us to estimate tuning pro-
file response bandwidth; an approach that is consistent
with measures of orientation selectivity used in both pop-
ulation level human fMRI and single-unit animal studies
(e.g., Byers & Serences, 2014; Niell & Stryker, 2008,
2010; Serences, Saproo, Scolari, Ho, & Muftuler, 2009),
as well as gain factor and baseline. The channel tuning

functions (CTFs) for each participant and exercise condi-
tion were independently fit with a von Mises function
(Equation 4) with mean (μ), concentration (k), gain
(g), and baseline (b) as independent free parameters that
reflect distinct attributes of the function. The parameter
μ is analogous to the mean in the normal distribution and
k is analogous to the inverse of the variance. Thus, k
represents tuning bandwidth (a larger k value reflects
increased concentration around the mean, hence reduced
bandwidth).

f θð Þ ¼ g * ek cos μ−xð Þ−1½ � þ b (4)

The von Mises function was fit to the data for each par-
ticipant/condition 150 times using initial seed values for g
(0–2), k (0–8), and b (−3 to 3). The μ seed value was fixed
at π/2. Ranges of initial seed values were used to help
ensure that the fitting algorithm did not get consistently
stuck in a local minimum. The set of parameters for each
participant and condition that yielded the lowest root
mean squared error across the 150 iterations were then
used for subsequent analyses.

Pupil Area, Gaze Position, and Head Motion

Pupil area, gaze position, and head motion data were ex-
tracted from the eye-tracking log file. Pupil area was re-
corded in arbitrary units; eye gaze position in X and Y
screen coordinates, which were converted to degrees
of visual angle; and head position in arbitrary X (horizon-
tal travel) and Y (vertical travel) units. Pupil area and head
motion data were normalized between 0 and 1 using the
equation xnew = (x − xmin)/(xmax − xmin). For consis-
tency with the EEG data, trials with early target onsets
(<2000 msec) were excluded and remaining trials were
cropped to precisely 2 sec. Head motion data from 5 of
the 18 participants were not logged, so the remaining 13
participants data were analyzed. To quantify changes in
gaze and head motion, a measure of sample dispersion
(the distribution of sample cluster around its mean) was
calculated for each trial. Sample dispersion Sd is defined

according to the equation Sd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2x þ S2y

� �
=2

r
, where Sx

2

and Sy
2 represent the horizontal and vertical variances of

the sampled cluster (Juni, Gureckis, & Maloney, 2015). Sd
scores were then averaged across trials to obtain mean
gaze dispersion and head motion dispersion scores for
each participant and condition.

Hypothesis Testing

Statistical significance of the hypothesis tests was assessed
using a nonparametric permutation-based resampling
technique to empirically approximate null distributions
for the F and t statistics (Foster et al., 2016). This approach
has the advantage of being robust to violations of normal-
ity. The null distributions were generated according to the
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type of data being analyzed. Specifically, for the univariate
repeated-measures analyses, we shuffled the condition
labels within subjects and ran 1000 iterations of the appro-
priate repeated-measures ANOVA and post hoc t tests,
which we then used to generate null distributions of
F values and t statistics. For the multivariate decoding and
IEM analyses, we shuffled the orientation labels and ran
1000 iterations of the model, reshuffling the labels with
every new iteration to create a matrix of 1000 null CTFs
for each subject and condition. Where appropriate, we
then ran repeated-measures ANOVAs, one-sample t tests,
or paired sample t tests on each of the 1000 iterations to
generate null distributions of F values and t statistics.
Once we obtained null distributions for each of our data
sets, we then tested for reliable difference by calculating
the probability of obtaining F and t statistics from each of
the null distributions that were greater than the observed
F and t statistics. The standard observed F and t statistics
for each test are reported in the text, along with the critical
p value (labeled pnull), which represents the probability of
observing a value greater than this in the null distribution.
To give a more precise sense of the position of the observed
statistic in the null distribution we report the tests as pnull <
.05, pnull < .01, or pnull < .001. If a pnull value of >.05
is reported, then the effect was not considered to be statis-
tically reliable. To provide an indication of effect size, partial
eta squared (η2) is reported for ANOVA results and Cohen’s
d for all t tests. To test for relationships between variables,
we used a bootstrap resampling procedure with 1000 itera-
tions to compute mean correlation coefficients and 95%
confidence intervals, whereby confidence intervals over-
lapping zero indicates a nonsignificant result.

RESULTS

Exercise Physiology and Task Performance

We used several measures to confirm the efficacy of our
exercise intensity manipulation. First, we compared the
exercise intensity conditions (rest, low, high) in terms
of heart rate and pupil area. Heart rate (Figure 2A) signif-
icantly increased as a function of exercise (F(2, 34) =
187.31, pnull < .001, η2 = .92), such that each stepwise
increase in intensity caused a significant increase in heart
rate (rest vs. low intensity, t(17) = 9.85, pnull < .001, d =

1.97; low vs. high intensity, t(17) = 9.59, pnull < .001, d=
1.04). Second, we compared exercise-induced changes in
pupil area (Figure 2B). The goal behind analyzing the pu-
pil data was to determine the effects of exercise-induced
arousal on raw pupil area, so the data were not baseline-
corrected. The data for each subject and condition were
collapsed across the 2 sec trial epoch for analysis
purposes. Pupil area increased as function of exercise
(F(1, 17) = 41.09, pnull < .001, η2 = .71), again with each
increase in exercise intensity resulting in a significant in-
crease in pupil area (rest vs. low-intensity, t(17) = 7.84,
pnull < .001, d = 0.53; low- vs. high-intensity, t(17) =
2.26, pnull < .05, d = 0.15). These results are consistent
with converging evidence from human and animal stud-
ies showing that in addition to variation with ambient
light, pupil dilation can also be used to index arousal
(McGinley et al., 2015; Erisken et al., 2014; Gilzenrat,
Nieuwenhuis, Jepma, & Cohen, 2010; Bradley, Miccoli,
Escrig, & Lang, 2008). However, an important consider-
ation is that, because of the dual-task nature of our study,
the stepwise increase in physical effort is likely accompa-
nied by an increase in mental effort, and this may also
contribute to the increased pupil size (Laeng, Sirois, &
Gredeback, 2012).
Third, we compared pedaling power output between

the two conditions in which the participants were pedal-
ing and observed that power output was greater during
high-intensity (mean ± SEM: 88.21 ± 21.5 W) compared
with low-intensity exercise (50.23 ± 2.44 W; t(17) = 7.56,
pnull < .001, d = 2.48). In addition, participants’ self-
reported exertion was greater during high-intensity (RPE
13.33 ± 0.12) compared with low-intensity (RPE 7.63 ±
0.17) exercise (t(17) = 27.37, pnull < .001, d = 9.28).
There was a small but significant increase in cadence
during low-intensity (53.47 ± 2.66 RPM) compared with
high-intensity (51.76 ± 2.21 RPM) exercise (t(17) =
4.29, pnull < .01, d = 0.69), likely because of participant’s
tendency to increase cadence when pedaling resistance
was minimal.
Analysis of the task performance data (Figure 2C) re-

vealed a general impairment of orientation discrimination
accuracy during exercise compared with rest (F(2, 34) =
6.71, pnull < .01, η2 = .28), such that accuracy was lower
during both exercise conditions (low and high intensity)
compared with rest (t(17) = 3.36, pnull < .001, d = 0.72;

Figure 2. Physiology and
behavior. (A) Mean heart rate
increased as a function of
exercise. (B) Normalized
pupil area measured over
the first 2000 msec of the
trial significantly increased
as a function of exercise.
(C) Target discrimination
accuracy decreased slightly
as a function of exercise.
*pnull < .05, **pnull < .001.
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t(17) = 2.53, pnull < .05, d = 0.62, respectively), but ac-
curacy in the exercise conditions did not differ (t(17) =
−0.78, pnull > .05, d = −0.14).

EEG Power and Pattern Classification

After preprocessing the EEG data, single-trial power be-
tween 4 and 30 Hz was estimated using a fast Fourier
transform (see Methods). Our stimulus stream cycled on/
off with a blank gray screen at 15 Hz and thus evoked a
robust spike in power at the 15-Hz stimulation frequency
that was focally distributed at the occipital and parieto-
occipital electrodes in each of the three exercise conditions
(Figure 3). Mean power at 15 Hz was modulated by
exercise intensity (F(2, 34) = 6.48, pnull < .01, η2 = .28),
such that power was significantly higher during both
exercise conditions (low and high intensity) compared
with rest (t(17) = 2.52, pnull < .05, d = 0.19; t(17) =
2.93, pnull < .05, d = 0.22, respectively). Power did not
differ between exercise conditions (t(17) = .58, pnull >
.05, d = 0.02). Mouse studies that have manipulated be-
havioral state using locomotion have reported reductions
in low frequency local field potential power (<30 Hz)
during locomotion when compared with stationary pe-
riods (Polack et al., 2013; Niell & Stryker, 2010). We con-
ducted this analysis on our Fourier coefficients measured
at occipital and parieto-occipital channels with a frequency
resolution of 0.17 Hz and revealed that estimates of
power across the lower-frequency bands (theta: 4–8 Hz,
alpha: 8–13 Hz, and beta: 16–30 Hz) were modulated by
exercise (F(2, 34) = 30.9, pnull < .001, η2 = .65), with in-
creased power during low- and high-intensity exercise
when compared with rest (t(17) = 6.16, pnull < .001, d =
0.55; t(17) = 6.70, pnull < .001, d = 0.67) but no differ-
ence in power between exercise conditions (t(17) =
1.46, pnull > .05, d = 0.11). This result contradicts the
mouse studies, but is consistent with previous recordings
of EEG activity in humans that show increases in alpha,

beta and/or theta frequency bands as a function of
exercise (Hottenrott et al., 2013; Bailey et al., 2008).

To determine the extent to which the single trial EEG
data carried information about stimulus orientation, esti-
mates of power and phase angle were entered into a linear
discriminant classifier using a leave-one-trial-out cross-
validation procedure (see Methods). Overall classifier accu-
racy was above chance (chance = 1/9) in all conditions
(rest: t(17) = 6.43, pnull < .001, d = 3.03; low: t(17) =
6.89, pnull < .001, d = 3.25; high: t(17) = 5.57, pnull <
.001, d= 2.63; Figure 4). Pairwise comparisons of classifier
performance indicated that decoding accuracy was higher
during rest compared with high-intensity exercise (t(17) =
2.36, pnull < .05, d = 0.54), but neither rest nor high-
intensity exercise were reliably different from low-intensity
exercise (t(17) = −0.04, pnull > .05, d = −0.01; t(17) =
2.01, pnull > .05, d = −0.57, respectively).

Inverted Encoding Model

To estimate orientation-selective tuning profiles at the
population level, we used an IEM modeling technique

Figure 3. Steady-state
responses. We observed robust
responses at 15 Hz across
occipital and parieto-occipital
electrodes (plots represent
spectral power averaged over
electrodes Oz, O1, O2, POz,
PO3, and PO4 and plotted
between 4 and 20 Hz for each
exercise condition).

Figure 4. Classification. Classification accuracy in rest, low-intensity,
and high-intensity exercise conditions (chance p = .11, represented
by the dashed line). Data from artifact-free scalp channels were
entered into the classifier. *pnull < .05.
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(e.g., Ester et al., 2015; Foster et al., 2016; Brouwer &
Heeger, 2009, 2011, 2013; Garcia et al., 2013; Naselaris
et al., 2011). Here we used complex Fourier coefficients
estimated at the artifact-free electrodes from the first
2000 msec of trials on which the target occurred over
2000 msec after trial onset (80% of trials). Doing so en-
sured that the neural response was not contaminated by
target rotation activity. A set of training trials (all trials
except for 1) was used to estimate the magnitude of
the response at each electrode as a linearly weighted
sum of the basis set (an idealized set of orientation tun-
ing functions represented in Figure 5A). Then, we used
these estimated training weights to estimate the relative
magnitude of the 15-Hz responses within different sub-
populations of neurons (or “channels”) that are tuned
to different stimulus orientations on the one trial left
out from the training set. This process was repeated until
all trials served in both training and test sets. The channel
responses estimated from the test trials were then aver-

aged and then converted to power by taking the square
of the absolute value of the complex numbers. The
resulting mean estimated response profiles are termed
“channel tuning functions” (CTFs) expressed in terms
of power (μV2).
To first demonstrate the general efficacy of this ap-

proach across orientations, we computed CTFs using
power at the stimulation frequency (15 Hz) for each of
the possible orientations in our stimulus set collapsed
across the three exercise conditions. This analysis pro-
duced stable tuning curves at each of the nine orienta-
tions (Figure 5B). As a second validation step, we
estimated CTFs at each frequency from 4 to 30 Hz and
then shifted the tuning functions to a common reference,
resulting in tuning functions centered on 0° (Garcia et al.,
2013). Figure 5C shows the centered CTFs through the
tested frequencies (4–30 Hz). There is a clear CTF pres-
ent at the stimulation frequency of 15 Hz thus confirming
that the orientation-selective response information is

Figure 5. Decoding and
encoding. (A) Graded basis
set used in IEM. Nine basis
functions spanning 0° to 160°
in 20° increments were created
from half-sinusoidal functions
raised to the seventh power.
(B) CTFs were derived from
the model, using the Fourier
coefficients at 15 Hz. This plot
depicts CTFs collapsed across
exercise conditions before
centering. (C) We ran the IEM
on all frequencies between
4 and 30 Hz and collapsed
across exercise conditions
and centered the TFs for ease of
plotting. This plot confirms a
robust tuning function at 15 Hz.
(D) Centered CTFs plotted at
15 Hz for rest, low-intensity,
and high-intensity exercise
conditions. (E) Centered CTFs
were folded from 9 points into
5 points to increase statistical
power. Von Mises fitting. Mean
gain (F), bandwidth (larger
k value reflects reduced tuning
profile bandwidth; G), and
baseline (H) of the best-fitting
von Mises function. Errors bars
represent SEM. **pnull < .01,
*pnull < .05.
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predominantly carried at the stimulation frequency and
not in other bands.
Having demonstrated the efficacy of this approach, the

key analyses involved testing whether exercise modulated
feature-selective response profiles. To do this, we computed
separate CTFs using the Fourier coefficients estimated at
15 Hz for each of the three exercise conditions and then
shifted the CTFs to a common center (Figure 5D). To
quantify exercise-induced modulation of the shapes of
the respective response profiles, we first evaluated changes
in CTF amplitude as a function exercise condition. To in-
crease statistical power, we folded the CTFs from 9 points
into 5 points (0°, 20°, 40°, 60°, 80°; Figure 5E) and then en-
tered the folded CTFs into a repeated-measures ANOVA
with exercise intensity (rest, low, high) and channel offset
(0°, 20°, 40°, 60°, 80°) as within-participant factors. This anal-
ysis revealed a robust effect of channel offset (F(4, 68) =
112.74, pnull < .001, η2 = .87) and critically a significant
exercise by channel offset interaction (F(8, 136) = 3.35,
pnull < .05, η2 = .16). This interaction was driven by
increased amplitude of the CTF during low-intensity exer-
cise at the CTF center (0°) and 20° channel offsets (t(17) =
2.68, pnull < .01, d = 0.52; t(17) = 2.39, pnull < .01, d =
0.49, respectively) and decreased amplitude of the CTF
during low-intensity exercise at the 40° and 60° channel off-
sets (t(17) =−2.14, pnull < .05, d=−0.46; t(17) =−2.17,
pnull < .05, d = −0.44, respectively), relative to the rest
condition. The interaction was also driven by increased
CTF amplitude during low-intensity exercise relative to
high-intensity exercise at the CTF center (0°) and de-
creased amplitude at 40° (t(17) = 2.08, pnull < .05, d =
0.56; t(17) = −3.04, pnull < .01, d = −0.89, respectively).
CTF amplitude did not differ significantly between rest and
high-intensity exercise conditions at any of the channel off-
sets ( pnull > .05). The selective enhancement around the
center of the orientation CTF under low-intensity exercise
relative to the other conditions is consistent with the notion
that exercise can induce multiplicative gain in feature-
selective response profiles.
To further investigate the source of the feature-

selective modulations during low-intensity exercise relative
to the other conditions, we fit a von Mises distribution to
the observed data for each participant and condition (see
Methods). One participant was excluded from this analysis
because of difficulty in fitting the data in the rest condition.
The best fitting parameters for bandwidth, gain, and
baseline were entered into paired-samples t tests to com-
pare low-intensity exercise versus rest and low-intensity
exercise versus high-intensity exercise. Gain increased dur-
ing low-intensity exercise relative to both rest and high in-
tensity exercise (t(16) = 2.28, 2.41, pnull < .05, d = 0.51,
.65, respectively; Figure 5F). Analyses of the bandwidth
data revealed an increase in the concentration parameter
(k) during low-intensity exercise relative to rest, thus
indicating reduced tuning profile bandwidth (t(16) =
2.53, pnull < .01, d = 0.69). Bandwidth was not modulated
during low-intensity exercise relative to high-intensity

exercise (t(16) = .49, pnull > .05, d = 0.17; Figure 5G).
Baseline was not modulated as a function of low-intensity
exercise relative to rest or high-intensity exercise (t(16) =
.26, .53, pnull > .05, d = 0.07, .18, respectively; Figure 5H).

Control Analyses

Six control analyses were carried out to check the consis-
tency of the main analyses and rule out any alternative
explanations.

First, the IEM approach applied here clearly revealed
CTFs that exhibited a graded response, such that the
peak response is at the center of the function (i.e., the
“preferred” orientation) and the response falls off gradu-
ally as the angular deviation of the stimulus increases.
However, because our basis set used similarly graded
functions, it is possible that the graded CTFs observed
here were an artifact of the basis set rather than inherent
in the EEG data. To rule out this alternative explanation,
we reran the analysis replacing the half-wave rectified si-
nusoid basis set with a set of delta (“stick”) functions at
each of the nine orientations (Figure 6A). The results of
this analysis again revealed graded CTFs modulated by
exercise, although the overall amplitude of the response
was attenuated relative to the CTFs extracted using the
graded basis set (Figure 6B).

Second, after artifact rejection, the number of trials in
each of the nine orientations in the training set was not
the same (mean trials per set: rest 30.94 ± .16, low
30.71 ± .27, high 30.66 ± .24). We confirmed that there
was no systematic bias in the number of training trials per
orientation as a function of exercise condition (F(2, 34) =
.94, pnull > .05, η2 = .05), orientation (F(8, 136) = .27,
pnull > .05, η2 = .02), or any interaction between the
two factors (F(16, 272) = .57, pnull > .05, η2 = .03;
Figure 6C).

Third, we observed a small but significant increase in
pedaling cadence in the low- compared with high-inten-
sity exercise condition. The presence of this difference
opens the door to the possibility that the modulations
in neural activation we observed were more related to ca-
dence than exercise intensity. If true, then there should
be reliable correlations between cadence and our various
measures of neural activity (i.e., CTF gain, bandwidth and
baseline, power at the stimulation frequency, and global
spectral power). Bootstrapped correlations confirmed
that there were no significant correlations (Table 2).

Fourth, consistent with studies in the animal literature
(McGinley et al., 2015; Erisken et al., 2014), we report a
monotonic increase in pupil size as a function of exercise
intensity. The magnitude of spherical aberrations in-
crease with pupil size, which is known to degrade the op-
tical quality of the retinal image (Lombardo & Lombardo,
2010), thus raising the possibility that exercise-induced
pupil dilation may modulate visuocortical gain. To
test this, percent change in pupil area and all neural mea-
sures were computed as a function of exercise condition.
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Bootstrapped correlations confirmed that there were
no significant correlations (Table 3), indicating that
the exercise-induced changes in neural activity reported
here are not confounded by changes in pupil size.

Fifth, our gaze-contingent methodology ensured that
any trials where the participant blinked or made eye
movements larger than 1.75° from the central fixation
cross were rejected online and rerun. However, small
changes in gaze dispersion within the acceptable window
could be modulated by exercise condition, which may
have contributed toward changes in brain activity. If true,
there should be reliable correlations between gaze
dispersion scores and measures of neural activity
(Figure 6D). Exercise condition modulated gaze dispersion

(F(2, 34) = 14.22, pnull < .001, η2 = .46), with greater dis-
persion during low- and high-intensity exercise compared
with rest (t(17) = 4.44, 3.67 pnull < .001, d = 1.37, 1.30,
respectively), but there was no difference between exercise
conditions (t(17) = .42, pnull > .05, d = 0.07). To deter-
mine if the exercise-induced changes in gaze dispersion
tracked with changes in the neural measures, percent
change between all exercise conditions (rest vs. low, rest
vs. high, low vs. high) was calculated for the gaze disper-
sion scores and all neural measures, and the percent
change values were then correlated (Table 3). There was
no relationship between exercise-induced changes in gaze
and changes in CTF characteristics, suggesting that the gain
and bandwidthmodulation effects we observe as a function
of exercise cannot be attributed to changes in changes in
gaze position within our acceptable window. Similarly,
there was no relationship between gaze and the spectral
power measures.
Finally, to assess whether our results were attributable

to motion artifacts in the EEG data, we quantified head
motion (see Methods) using a dispersion metric similar
to the gaze position dispersion metric described above
(Figure 6E). Exercise condition modulated head position
dispersion (F(2, 24) = 54.1, pnull < .001, η2 = .82), with
greater dispersion during low- and high-intensity exercise
compared with rest (t(12) = 7.82, 9.06, pnull < .001, d =
2.48, 2.84), but the exercise conditions were not different
(t(12) = 1.24, pnull > .05, d = 0.24). As with the gaze
position analysis, there were no correlations between
head position dispersion and any of the CTF measures

Figure 6. Control analyses. Delta (stick) functions. (A) To rule out the possibility that the CTFs we observed were an artifact of our graded basis
set, we reran our IEM replacing the original half-sinusoid basis set with a set of Delta (“stick”) functions. (B) The CTFs that we obtained from
this analysis revealed graded CTFs with a similar pattern of modulation by exercise as before. Trials per orientation. (C) Plot shows the mean
number of trials present for each orientation in the training set following artifact rejection. Gaze dispersion and head motion. (D) Gaze sample
dispersion. (E) Head motion sample dispersion. Errors bars represent SEM. **pnull < .001.

Table 2. Bootstrapped Correlations Comparing Mean Cadence
with Mean Neural Measures during the Low- and High-intensity
Exercise Conditions (−95% CI < Mean Rho < +95% CI)

Low Intensity High Intensity

Cadence

CTF gain −.35 < .08 < .46 −.27 < .03 < .40

CTF bandwidth −.32 < .07 < .31 −.37 < −.01 < .58

CTF baseline −.58 < −.19 < .34 −.25 < −.10 < .35

Stimulation freq. −.61 < −.32 < .08 −.54 < −.25 < .22

Global spectral
power

−.54 < −.25 < .14 −.63 < −.33 < .06

*p < .05.
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(Table 3). There was, however, a relationship between
increased head motion and increased global spectral
power and power at the stimulation frequency as a func-
tion of low-intensity exercise relative to rest.

DISCUSSION

Changes in behavioral state induced by physical activity
influence the neural correlates of information processing
in humans (Bullock et al., 2015; De Sanctis et al., 2014;
Pontifex & Hillman, 2007), rodents (Fu et al., 2014; Ayaz
et al., 2013; Saleem et al., 2013; Niell & Stryker, 2010) and
invertebrates (Chiappe et al., 2010; Maimon et al., 2010).
To investigate the effects of physical activity on feature-
selective sensory coding in the human, we applied an
IEM approach to scalp recorded EEG acquired at rest and
during acute bouts of low- and high-intensity exercise. This
approach enabled us to estimate feature-selective response
profiles from the spatial distribution of evoked EEG activity
across the scalp. Our key finding was that response profiles
exhibited an inverted-U pattern as a function of exercise,
with response gain during low-intensity exercise relative
to both rest and high-intensity exercise, and a reduction

in estimated tuning profile bandwidth during low-intensity
exercise relative to rest. Critically, the present data go be-
yond our previous reports of modulation in human sensory
cortex as a function of exercise (Bullock et al., 2015) by
demonstrating the specific nature of exercise effects on
population level feature-selective coding profiles. These
findings suggest that evidence for enhanced sensitivity in
single-unit non-human mammalian and invertebrate
studies may generalize to population level responses in
human visual cortex.

Vision is a fundamentally important sensory domain for
successful representation, interaction, and navigation of
the environment; thus, it seems intuitive that physiolog-
ical arousal induced by acute bouts of activity would
induce a high state of gain in visual cortex. The transition
to high gain state in visual cortex appears to happen as
rapidly as the transition from stationary to running in the
mouse (Saleem et al., 2013; Niell & Stryker, 2010), which
indicates a close link between visual cortex and motor
drive. The present data suggest that behavioral state
can also act as a gain modulator in human visual cortex.
Furthermore, it is important to note that our IEM tech-
nique allows us distinctly different insight to the single

Table 3. Bootstrapped Correlations Comparing Percent Change in Pupil Area, Gaze and Head Motion with Percent Change in
Neural Measures (−95% CI < Mean Rho < +95% CI)

%Δ Rest vs. Low %Δ Rest vs. High %Δ Low vs. High

Pupil Area

CTF gain −.29 < .03 < .31 −.56 < −.09 < .19 −.38 < −.02 < .39

CTF bandwidth −.62 < −.25 < .39 −.51 < .04 < .85 −.29 < .23 < .66

CTF baseline −.43 < −.11 < .41 −.12 < .71 < .99 −.90 < −.28 < .14

Stimulation freq. −.27 < .28 < .78 −.20 < .31 < .72 −.02 < .35 < .60

Global spectra power −.75 < .28 < .22 −.67 < −.22 < .26 −.21 < .31 < .58

Gaze Dispersion

CTF gain −.22 < .10 < .59 −.29 < .01 < .34 −.72 < −.37 < .13

CTF bandwidth −.18 < .11 < .45 −.37 < −.04 < .70 −.45 < .06 < .85

CTF baseline −.47 < −.07 < .28 −.29 < −.07 < .28 −.07 < .20 < .51

Stimulation freq. −.55 < −.17 < .23 −.51 < −.18 < .30 −.67 < −.41 < .02

Global spectral power −.66 < −.26 < .10 −.65 < −.34 < .04 −.64 < −.23 < .28

Head Movement Dispersion

CTF gain −.57 < −.28 < .41 −.67 < .06 < .53 −.70 < −.01 < .59

CTF bandwidth −.68 < −.52 < .07 −.77 < −.58 < .17 −.63 < .41 < .10

CTF baseline −.75 < −.07 < .36 −.87 < −.35 < .35 −.32 < .11 < .75

Stimulation freq. .21 < .59 < .90* −.65 < .27 < .65 −.51 < .03 < .73

Global spectral power .34 < .75 < .95* −.12 < .51 < .86 −.76 < −.21 < .65

*p < .05.
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unit data, in the sense that we can show effects of behav-
ioral state on the large-scale populations of neurons that
are activated during stimulus representations. The unique
advantage of this approach is that it provides a holistic un-
derstanding of stimulus encoding, which cannot be ob-
tained by study single units in isolation (Sprague et al.,
2015). Thus, here we extend single-unit observations that
behavior state modulates gain to the population level.

Our observation that physiological arousal can have
nonlinear effects on neural response gain is also consis-
tent with recent studies of humans and animals (Bullock
et al., 2015; McGinley et al., 2015). Gain in the magnitude
of the response profile at low- but not high-intensity ex-
ercise or at rest is consistent with the inverted-U notion
that arousal beyond a certain point is detrimental to per-
formance (Yerkes & Dodson, 1908). We observed these
inverted-U effects in a previous study that reported non-
specific ERP evidence for sensory response gain in early
visual processing during low-intensity exercise when
compared with rest and high-intensity exercise (Bullock
et al., 2015). Changes in membrane potential may offer
an explanation for these effects. There is evidence that
membrane potential in cells in visual cortex becomes
more depolarized and less variable during locomotion
(Polack et al., 2013), and a recent study in mouse audi-
tory cortex suggests that at medium levels of arousal the
membrane potential is low with minimal levels of spon-
taneous firing, compared with slow oscillations at low
arousal and tonic depolarization at high levels of arousal
(McGinley et al., 2015).

We acknowledge that there is a mismatch between the
inverted-U shaped pattern of exercise effects on CTFs
and the drop in task performance as a function of the ex-
ercise conditions when compared with rest. There are
several key points to consider. First, the decline in task
performance as a function of exercise is likely due to
the use of the method of constant stimuli to set the ori-
entation task difficulty while participants were at rest (sin-
gle task) and then requiring them to perform the task at
the same difficulty level while concurrently pedaling to
the beat of a metronome during the exercise conditions
(dual task). Second, the neural activity evoked by the
stimulus rotation, which serves as the target-defining fea-
ture, is not included in the model. Instead, consistent
with the approach used by Garcia, Srinivasan, and Serences
(2013), the CTFs are reconstructed from the 2 sec of pre-
target activity to prevent interference from the rotation.
Furthermore, the reconstructed CTFs are based on neural
activity evoked by the steady-state flickering grating at a
fixed orientation, whereas the task performance is based
on discrimination of rotation away from that orientation,
which may require a different type of detector. Hence, it
is possible that the increased gain and reduced profile
bandwidth during the low-intensity exercise condition
may reflect an enhanced detector relative to rest and
high-intensity exercise conditions, but the behavioral task
is not sensitive to these changes. Third, boosting the signal

in local sensory information processing, as appears to be
the case in the low-intensity exercise condition, may not
necessarily have effects on downstream processing areas
and thus may not impact upon task performance (Sprague
et al., 2015; Krauzlis, Bollimunta, Arcizet, & Wang, 2014;
Zénon & Krauzlis, 2012). Finally, althoughU-shaped perfor-
mance curves have been observed as a function of exercise
in mice (McGinley et al., 2015), we have also shown mis-
match between sensory recordings and behavior in physi-
cally active humans in our previous work. In an ERP study,
we observed gain modulation in the P1 ERP component
during low-intensity exercise, but behavioral performance
was only enhanced during high-intensity exercise. Several
behavioral studies provide indirect evidence for enhance-
ment of sensory processing in humans after a bout of acute
physical activity (Davranche & Pichon, 2005; Davranche &
Audiffren, 2004); thus, it is entirely possible that exercise
effects on sensory processing may enhance human perfor-
mance in a task that is better suited to measuring this
relationship.
Although the IEM results are the primary focus of this

discussion, we also acknowledge that the spectral power
analyses and classification analysis show different pat-
terns of exercise-induced modulation. The increase in
spectral power from 4 to 30 Hz is consistent with previ-
ous recordings of EEG activity in humans (Hottenrott
et al., 2013; Bailey et al., 2008), and greater spectral
power does not imply greater separability of the neural
patterns associated with the different orientations, so it
is not surprising that the exercise effects on spectral
power do not track with the classification or IEM results.
Furthermore, it is not unexpected that the pattern classi-
fication and IEM results show different patterns of exercise-
induced modulation, given the fundamental differences in
the nature of these analytical approaches. Classification
techniques essentially determine the separability of the
classes (i.e., in this case different stimulus orientations)
based on observed patterns of neural activation. Other
than assuming that there are different classes (e.g., stimu-
lus orientation), classification approaches do not typically
make assumptions about the specific structure of the un-
derlying patterns of neural activation to each class. In con-
trast, encoding models use a set of a priori assumptions
about the structure of the feature space (Gur & Snodderly,
2007; Ringach, Bredfeldt, et al., 2002; Ringach, Shapley,
et al., 2002) to capture changes in neural codes at the pop-
ulation level, thus enabling stimulus representations to
quantified in terms of native feature space (i.e., gain,
bandwidth and baseline) rather than signal space (Sprague
et al., 2015; Garcia et al., 2013).
Naturally, there are several limitations to our approach.

EEG acquired at the scalp reflects the summed response of
dendritic postsynaptic potentials from many different neu-
ral populations across the cortex, and thus, our conclusions
are limited in the sense that we cannot differentiate be-
tween cell types or investigate subcortical function in the
human. This is important, as while evidence from the
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mouse suggests that most cortical neurons that respond to
visual stimulation are excitatory, broad-spiking neurons
that showmultiplicative gain without changes in feature se-
lectivity as a function of locomotion, there are subsets of
cortical neurons and neurons at earlier, subcortical stages
of visual processing that show very different patterns of
modulation by locomotion (Erisken et al., 2014; Niell &
Stryker, 2010). Another important consideration is that, al-
though we do observe large-scale population level modu-
lation of tuning bandwidth as a function of low-intensity
exercise relative to rest, this does not imply uniform mod-
ulation of tuning profiles across all single units. We also
note that the magnitude of the response gain effects ob-
served here in exercising humans are notably smaller than
effects observed in locomoting flies and mice (for a sum-
mary, see Maimon, 2011), although given that we are com-
paring scalp-recorded EEG in humans with single-cell
action potentials in animals and invertebrates, it is not pos-
sible to determine whether these inconsistencies are due
to fundamental differences in species or techniques. It is
also possible that increased perspiration as a function of
exercise might influence the neural data by changing elec-
trode impedances across the conditions; however, if this
were the case, we would predict a monotonic change in
the fidelity of the model as a function of exercise, not the
inverted-U curve observed here. Nevertheless, despite
these caveats, the consistencies in overall patterns of
locomotion-induced gain represent an important first step
in linking behavioral state effects on mouse and human
cortex.
In summary, this study used an IEM approach to investi-

gate the influence of behavioral state on estimated response
profiles of neurons in human sensory cortex. Our findings
indicate that behavioral state can modulate response gain
and tuning profile bandwidth in sensory cortex and that
the effects of increased physiological arousal may be non-
linear. Thus, despite profounddifferences in visual pathways
across species, these data suggest that evidence for en-
hanced sensitivity in intracellular non-human mammalian
and invertebrate studies may generalize to population level
responses in human sensory cortex. This work provides
valuable evidence linking the neural mechanisms of be-
havior state across species and opens the door to further
investigations into the influence of physical activity on the
human brain.
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