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A mental representation of the location of an object can be constructed using sensory information selected from the environment and
information stored internally. Human electrophysiological evidence indicates that behaviorally relevant locations, regardless of the
source of sensory information, are represented in alpha-band oscillations suggesting a shared process. Here, we present evidence from
human subjects of either sex for two distinct alpha-band-based processes that separately support the representation of location, exploit-
ing sensory evidence sampled either externally or internally.
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Introduction
Mental representations of behaviorally relevant visual features
and locations are based on information sampled from the envi-
ronment and can persist in visual working memory even in the
absence of maintained external sensory input (Harrison and
Tong, 2009; Serences et al., 2009; Foster et al., 2016). Unlike
features (e.g., colors), when stimulus locations are being main-
tained in working memory, the location of a stimulus remains
available so long as there is visual input from the environment to

be sampled, even if the stimulus is not present. Importantly, un-
interrupted visual input is not necessary for successful recall of
location, as multiple attended locations can be recalled when eyes
are closed during retention (Pearson and Sahraie, 2003). Thus,
mental representations of locations can be constructed from in-
formation sampled from the external environment or from in-
formation encoded internally.

Both the selection (i.e., sampling) and retention of mental
representations of locations, regardless of the source of informa-
tion (i.e., external or internal), appear to be supported by pro-
cesses associated with alpha band oscillations (Kelly et al., 2006;
Thut et al., 2006; Foster et al., 2016, 2017; Samaha et al., 2016; van
Moorselaar et al., 2018). The retention of spatially selective rep-
resentations, and the associated alpha activity, may represent a
continuous process of selection, i.e., the focus of attention
(Lewis-Peacock et al., 2012), working memory, or a combination
of both. Consistent with this hypothesis, recent evidence from a
dual task paradigm involving a shift of spatial attention during
the retention interval of a spatial working memory task revealed
that alpha carried information about the location stored in mem-
ory, but then when attention was cued to a new location, alpha
carried information about the newly attended location until the
task was complete and shifted back to the location stored in mem-
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Significance Statement

Our sensory environment and our internal trains of thought are coded in patterns of brain activity and are used to guide coherent
behavior. Oscillations in the alpha-frequency band are a predominant feature of human brain activity. This oscillation plays a
central role in both selective attention and working memory, suggesting that these important cognitive functions are mediated by
a unitary mechanism. We show that the alpha oscillation reflects two distinct processes, one that is supported by continuous
sampling of the external sensory environment, and one that is based on sampling from internal representations coded in visual
short-term memory. This represents a significant change in our understanding of the nature of alpha oscillations and their
relationship to attention and memory.
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ory (van Moorselaar et al., 2018). This systematic tradeoff be-
tween the attention and memory tasks suggests that alpha
represents a unitary mechanism that mediates spatial selectivity
and that this mechanism is shared by attention and spatial work-
ing memory.

Although the evidence reviewed above is consistent with the
notion that alpha represents a unitary mechanism for the selec-
tion and retention of behaviorally relevant locations, this evi-
dence comes exclusively from tasks in which there is sustained
visual input from the external environment. Thus, it is unknown
whether similar processes are involved in coding information
from internal representations, as may be required when sensory
input is disrupted (e.g., by eye closure or sensory degradation)
and, as such, it is unclear whether alpha represents a unitary
process for the selection and retention of locations when in-
formation is sampled from the external environment or from
information that has already been encoded internally (i.e., infor-
mation in visual working memory). Here we present evidence
that at least two distinct processes associated with alpha-band
oscillations support spatially selective representations: (1) a fast
and continuous location selection process that is disrupted by a
masking stimulus and that degrades without continued external
visual input, and (2) a delayed process that emerges when exter-
nal visual input is no longer available. Participants performed a
delayed spatial estimation task (Wilken and Ma, 2004; Zhang and
Luck, 2008; Foster et al., 2016), in which a single stimulus was
briefly presented in the periphery, in one of eight possible loca-
tions on the circumference of an imaginary circle (Fig. 1a). Par-
ticipants were instructed to attend covertly to the stimulus
location, remember its location, and report the location after a
short delay. The presence or absence of a masking checkerboard
after the stimulus, and the state of the eyes during retention (open
or closed) yielded four within-subject conditions: eyes open, eyes
open � mask, eyes closed, eyes closed � mask.

Materials and Methods
Participants. Participants were 18 adult volunteers (mean age � 20.8
years, 13 females, all right handed) recruited from the University of Cali-
fornia–Santa Barbara (UCSB) community. Participants were compen-
sated at a rate of $10 per hour (minimum of $120 total/participant). All
participants reported normal or corrected-to-normal vision. The UCSB
Human Subjects Committee approved all procedures.

Stimuli and procedure. Each participant completed four testing ses-
sions on four separate days. Sequential sessions were separated by a min-
imum of 24 h. All four sessions were completed within an eight-week
period for a given participant. In each session the participant was re-
quired to perform 15 blocks of 64 trials (960 trials total) of the same
delayed spatial estimation task. Each session consisted of a different ex-

perimental condition of the task: “eyes open” (EO), “eyes closed” (EC),
“eyes open with mask” (EO�M), and “eyes closed with mask” (EC�M).
The order of experimental conditions was counterbalanced between
participants.

Each trial of the delayed spatial estimation task began with a small blue
fixation dot (subtending 0.2° visual angle) in the center of the screen,
along with a green dot (subtending 0.4° visual angle) representing the
location of the participant’s gaze. The participant aligned their gaze dot
with the fixation dot and pressed the space bar to start the trial. The
fixation dot immediately turned gray to indicate that the trial was under-
way. After a brief fixation (jittered randomly between 0.6 s and 1.5 s) the
stimulus, a gray target circle (subtending 1.6° visual angle), appeared,
centered at a point on an imaginary circle circumventing 4° from fixa-
tion. The stimulus appeared within one of eight angular location bins
relative to fixation (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°), with angle
jittered randomly within each bin between �1– 44°.

The stimulus remained on screen for 0.25 s. Following stimulus offset
there was a 1.75 s retention interval. A gray response ring then appeared,
circumventing 4° of visual angle from fixation, along with an auditory
cue (0.1 s, 250 Hz pure sine wave). The participant used the mouse cursor
to indicate the location of the target on the response ring. The mouse
cursor appeared in a randomized corner of the response screen on each
trial. This prevented the participant from anticipating the forthcoming
mouse movement during the retention period.

The key manipulations between sessions occurred immediately post-
stimulus, during the retention interval. In the EO condition participants
were instructed to maintain fixation for the duration of the retention
interval. In the EC condition participants were instructed to close their
eyes immediately after stimulus offset and reopen them when they heard
an auditory cue at the end of the retention interval. In the EO�M and
EC�M conditions participants were given then same respective instruc-
tions, however the target was masked with a global checkerboard (0.05 s,
whole screen, each checker subtending 0.48° by 0.48° of visual angle).

Gaze-contingent eye tracking was used in all sessions during fixation,
stimulus presentation and retention periods. Trials where participants
blinked or their gaze deviated �2.4° from fixation were aborted. In the
EC/EC�M conditions, the trial was also aborted if the participant did not
close their eyes between 0.05 s and 0.5 s following target offset. This
ensured that participants closed their eyes in a timely manner and also
that they viewed the checkerboard mask in its entirety in the masked
condition. If the participant reopened their eyes during the retention
period of the EC/EC�M condition the trial was aborted. On all trials in
which the gaze-contingent conditions were broken, the next trial be-
gan immediately and the aborted trial was added to the end of the trial
sequence for that block of trials, thus ensuring a complete set of trials
without gaze deviations were recorded for each participant in each
condition.

While performing the task, the participant was positioned in a chin
rest at 120 cm viewing distance from a monitor (19 inch ViewSonic E90f
CRT) and stimuli were presented using custom scripts that used the
Psychophysics Toolbox for MATLAB (version 2013b, The MathWorks,

Figure 1. Delayed spatial estimation task. a, Trial procedure for each experimental condition. b, Precision of spatial estimation and guess rate. Error bars indicate SEM.
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Inc., Natick, Massachusetts, United States). An eye-tracker (Eyelink 1000
plus, SR Research) was positioned 60 cm from the right eye (monocular
tracking @ 1000 Hz, mean error �1°). Performance on the delayed spa-
tial estimation task was modeled using the MemToolbox (Suchow et al.,
2013). A standard mixture model with bias was applied to error in the
spatial estimates (in degrees of offset) of each participant within each
condition yielding a measure of precision of estimate as well as guess rate.

EEG data acquisition. EEG data were recorded for each participant
using the Active Two system (BioSemi) consisting of 64 Ag-AgCl sintered
active electrodes arranged in an elastic cap (Electro-Cap) and placed in
accordance to the 10 –20 system. Additional electrodes were placed at the
right and left mastoids, as well as 1 cm lateral to the left and right canthi
(horizontal) and above and below each eye (vertical) for the EOG. Data
were sampled at 1024 Hz and referenced offline to the average mastoid
signal. All recording took place in an electrically shielded chamber to
ensure minimal interference from external sources of electrical noise.

EEG data preprocessing. Custom scripts in MATLAB (version 2013b,
The MathWorks, Inc., Natick, Massachusetts, United States), using the
EEGLAB toolbox (Delorme and Makeig, 2004), were used for offline
processing of the EEG data. The continuous data were referenced to the
average mastoid signal and then high- and low-pass filtered between 0.1
Hz and 80 Hz, respectively (EEGLAB function pop_eegfiltnew). The Au-
tomatic Artifact Removal (AAR) toolbox (Gomez-Herrero et al., 2006)
was then used to remove ocular artifacts associated with eye closure
during the EC/EC-M conditions. The data were then resampled at 256
Hz (EEGLAB function pop_resample), to reduce computation time and
memory demands, then epoched between �0.5 and 2.5 s around the
onset of the stimulus. EEG data for aborted trials were discarded. The
data were then visually inspected and noisy electrodes were excluded
(mean electrodes excluded [mean � SEM] � 1.23 � 0.36). To maintain
consistency in the topographic distribution of electrical activity across
the scalp, noisy electrodes that were excluded from one condition were
also excluded from all other conditions for that subject. Epochs with
amplitudes exceeding � 150 �V in remaining electrodes were then ex-
cluded (mean trials excluded: EO 19.21 � 4.53; EC 17.06 � 3.15, EO�M
16.27 � 3.27; EC�M 16.06 � 4.14).

Intertrial coherence. To observe the evoked response to the stimulus,
the mask, and eye closure we calculated intertrial coherence (ITC) of the
epoched data in the alpha (8 –12 Hz) range (EEGLAB function erpimage)
for each participant within each condition. ITC reflects the phase coher-
ence of the EEG signal between trials (between 0 and 1, where 0 indicates
no coherence and 1 indicates perfect coherence). Increased phase coher-
ence reflects a reset in phase time-locked to an event (stimulus, mask or
eye closure onset). This value is determined separately within each elec-
trode. As we were interested in signals evoked by visual processing we
averaged the ITC in parietal and occipital electrodes (P07/8, P03/4, O1/2,
POz, Oz).

Spectral analysis. Epoched data were filtered using a third-order But-
terworth bandpass filter (MATLAB function butter) from 8 to 12 Hz
(alpha). A Hilbert transformation (MATLAB function hilbert) was then
applied to the filtered signal to obtain a measure of instantaneous ampli-
tude and phase. The data were then epoched again between �0.5 and 2 s
(0.5 s prestimulus to the end of the retention period).

Before modeling, induced power was calculated as the square of the
absolute of the Hilbert transformed complex values. Induced power re-
flects ongoing oscillatory activity regardless of its phase relationship with
stimulus onset. Within each location bin trials were then randomly sub-
divided into three samples and then averaged to create three averaged
trials per location bin. After averaging, each condition included 24 aver-
aged trials (8 location bins � 3 averaged trials).

Because trial-based artifact rejection results in uneven numbers of
trials per condition, it was necessary to ensure that any comparisons
between conditions were not influenced by unequal trial counts. Before
entering the data into the IEM, the minimum number of trials per loca-
tion bin (n) was calculated across the four conditions for each partici-
pant. To ensure equal numbers of trials from each location bin were
entered into the model, n-1 trials were randomly selected from each bin.

Inverted encoding model (IEM). An IEM was used to estimate spatially
selective neural population (“channels”) response profiles based on the

topographical distribution of alpha power across the scalp (Foster et al.,
2016). The model first estimates the extent to which the linear combina-
tion of a priori canonical channel responses (i.e., a basis set) captures the
underlying structure of the observed data (topographical distribution of
alpha power), yielding a set of regression weights. The model then uses
these weights to estimate the channel response from the observed data.
The parameters of these channel response estimates can then be used to
quantify the spatially selective response. This method was initially ap-
plied to fMRI data (Brouwer and Heeger, 2009, 2011, 2013; Naselaris et
al., 2011; Serences and Saproo, 2012; Ester et al., 2015) and has been
recently applied to EEG recorded at the scalp (Garcia et al., 2013; Foster
et al., 2016, 2017; Samaha et al., 2016; Bullock et al., 2017).

The IEM was run separately for each sample in time (256 Hz EEG
sampling rate � 2.5 s � 640 samples) using induced alpha power within
each condition for each participant. Evoked power was also modeled; the
results replicated those of Foster et al. (2016), and did not differ by
condition. Note that as performance of the IEM is sensitive to noise we
compared the alpha signal-to-noise ratio (SNR; mean alpha power/stan-
dard deviation of power in other frequencies) between conditions and
found no difference (all effects BF � 1). For cross-validation of the IEM
a k-fold approach was used where k � 3. The averaged trials were ran-
domly grouped into three blocks, each with one averaged trial per loca-
tion bin. Training was performed using 2/3 blocks and the resulting
model was tested on the remaining block. This was repeated such that
each block served as the test block.

For each participant and condition, m represents the number of EEG
electrodes in each dataset (mean across participants � 62.77 � 0.36;
equivalent within participant), n1 represents the number of trials in the
training set (2 blocks of 8 averaged trials) and n2 represents the number of
trials in the testing set (1 block of 8 averaged trials). Let j be the number
of hypothetical location selective channels (C1, j � n1), composed of
half-sinusoidal functions raised to the seventh power as the basis set.
Here, the basis set was comprised of 8 equally spaced locations (i.e., j �
8). B1 (m � n1) represents the training set and B2 (m � n2) the test set. A
standard implementation of the general linear model (GLM) was then
used to estimate the weight matrix (W, m � j) using the basis set (C1).
More specifically, using the GLM:

B1 � WC1

Then, the ordinary least-squares estimate of W can be computed as
follows:

Ŵ � B1C1
T(C1C1

T)1

Using the estimated weight matrix (Ŵ, Eq. 2) and the test data (B2), the
channel responses C2 ( j � n2) can be estimated by the following:

Ĉ2 � (ŴTŴ)�1ŴTB2

After the Ĉ2 was solved for each location bin, the channel response func-
tion on each averaged trial was then circularly shifted to a common
stimulus-centered reference frame (degrees of offset from channel’s pre-
ferred location bin), and the centered response functions were averaged
across channels. The model was repeated for each time sample. To safe-
guard that the outcome of the model and ensure that any subsequent
analyses were not influenced by an idiosyncratic selection of trials, this
process was repeated 10 times, with a randomized selection of trials
entered into the IEM for each of the iterations, and the final centered
tuning function was computed by averaging over the 10 iterations.

The IEM procedure was also performed with randomly permuted
location bin labels. Randomizing the location bin labels should eliminate
spatially selective responses and result in flat channel response profiles.
These permuted responses were used for hypothesis testing.

Temporal generalization of IEM. To observe the intra- and intercondi-
tion temporal generalization of the IEM we ran the IEM as described
above by training at each sample in time, but then testing on every sample
in time, both within condition and between conditions. To reduce com-
putation time and the number of comparisons we down-sampled the
data before modeling from 256 Hz (640 samples) to 16 Hz (40 samples).
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We repeated the generalization IEM procedure with permuted location
bin labels for the purpose of hypothesis testing.

Quantifying spatially selective representations. To quantify spatial selec-
tivity, the estimated channel responses were folded around 0° of offset,
transforming the responses from [�135, �90, �45, 0, 45, 90, 135, 180]
into [0, 45, 90, 135, 180] by averaging the response at corresponding
offsets (� 45, 90, and 135°; 0° and 180° were not averaged). Slope was
then computed (MATLAB function polyfit) as the linear regression
weight of alpha power across offset. Larger slope values indicate greater
spatial selectivity.

Linear decoding analysis. To assess the extent to which the scalp topog-
raphy of alpha power discriminated between the neural responses to
stimuli presented in the eight different location bins without assuming an
a priori response profile (i.e., the basis set in the IEM approach), we
trained and tested linear discriminant pattern classifiers in a series of
three analyses that paralleled the IEM analyses. First, we trained and
tested classifiers within each condition at each point in time during the
trial. Second, we conducted an intracondition temporal generalization
analysis in which a classifier was trained at each time point and tested on
all of the other time points. Third, we conducted an intercondition tem-
poral generalization analysis in which training was conducted on each
time point in one condition and tested on all the time points in each of
the other conditions.

For each analysis, the classifier (MATLAB function classify, ‘linear’
option) was trained using power at parietal (P1–10,z), parietal-occipital
(PO3,4,7,8,z), occipital (O1,2,z), and inion (Iz) electrodes. We restricted
the analyses to these 20 electrodes on an a priori basis to reduce the
dimensionality of the training data, ensuring stability of the classifier. To
reduce computation time and to facilitate comparison with the IEM
generalization analyses we down-sampled the data at 16 Hz (16 Hz EEG
sampling rate � 2.5 s for each trial � 40 samples). Leave-one-trial-out
cross-validation was used to train and test the classifiers and performance
was measured by computing the proportion of correct classifications (n
correct classifications/total classifications). Chance for these analyses was
1/8 � 0.125. As with the IEM analyses, all classification analyses were
rerun permuting the location bin labels.

Alpha lateralization analysis. Systematic changes in alpha power to-
pography that occurred as a function of stimulus locations were assessed
by normalizing (i.e., dividing) the difference in alpha power at contralat-
eral and ipsilateral parietal/occipital electrodes sites (PO3/4, PO7/8,
O1/2) by the sum of power at contralateral and ipsilateral sites. Normal-
ized alpha power at contralateral and ipsilateral sites was then averaged
by condition and time window. The first time window overlapped with
cue presentation, following the earliest stimulus-related evoked poten-
tials and the emergence of a spatially selective representation (198 –250
ms). The second time window overlapped with the retention interval
(postmask/eye closure; 750 –2000 ms). Because the first time window is
only 52 ms, while the second is 1250 ms, a 52 ms window was randomly
and independently selected from the retention interval for each condi-
tion for each participant, such that the average latency of the window was
centered 	 1375 ms after stimulus onset. This ensured that estimates of
the mean and variability in each time window were based on the same
number of time points.

Experimental design and statistical analysis. Bayes factor (BF) was cal-
culated for the purpose of inferential statistics (Kass and Raftery, 1995;
Rouder et al., 2012; Kruschke and Liddell, 2018) using functions from the
Bayes Factor toolbox for R (Morey et al., 2015), which uses a Cauchy
prior. According to various guidelines a BF between 1 and 3 indicates
“anecdotal evidence” for H1, between 3 and 10 indicates “moderate”
evidence, between 10 and 30 indicates “strong” evidence, and �30 indi-
cates “very strong” evidence (Kass and Raftery, 1995; Wetzels et al., 2011;
Dienes, 2016; Kruschke and Liddell, 2018).

To test the reliability of the spatially selective channel responses, BF
paired t tests (R function ttestBF ) were computed at each sample in time
comparing the slopes of the real and permuted channel response esti-
mates. To test for differences in slope between conditions BF ANOVAs
(R function anovaBF ) with the factors eyes (open vs closed) and mask
(masked vs unmasked) were computed comparing the slopes of the real
channel response estimates at each time point. To contrast slope values

resulting from the temporal generalization analyses within conditions, to
those between conditions, BF paired t tests were also computed for each
cell in the generalization matrix. To assess the relationship between slope
and ITC, BF regressions (R function regressionBF ) were computed. BF
ANOVAs and t tests were also used to test for differences in performance.

Our analyses involve repeated comparisons at multiple time points,
which raises the specter of increased inferential error. However, it should
be noted that Bayesian inference, even without correcting for multiple
comparisons, is more conservative than frequentist inference, and much
less likely to result in false confidence (Gelman and Tuerlinckx, 2000).
Furthermore, our effects are present at multiple time points, as hypoth-
esized, and no inference relies on a single comparison, but rather a pat-
tern of effects across time. Our inferences are further strengthened by our
use of IEM parameters based on permuted data for comparisons, which
yields a more realistic null for our comparisons, and that our parameters
are averaged over multiple repetitions of the IEM. These features should
help mitigate errors due the peculiarities in the data at a given time point
or sample of trials.

Code accessibility. All custom code will be made available in a public
repository on GitHub/OSF (please contact the corresponding authors for
more information).

Control study. Participants in the control study were 12 adult volun-
teers (mean age � 22.9; six males; 11 right-handed) recruited from the
University of California Santa Barbara community. Participants were
compensated at a rate of $10 per hour (minimum of $60 total/partici-
pant). All participants reported normal or corrected-to-normal vision.
The UCSB Human Subjects Committee approved all procedures.

Participants completed two conditions of the same delayed spatial
estimation task as described above, in two separate sessions on two dif-
ferent days: (1) eyes open and (2) eye-blink. The eyes open condition was
identical to that used in the main experiment. The eye-blink condition is
identical to the eyes closed condition except that participants were in-
structed to reopen their eyes after closing them in response to the audi-
tory cue (i.e., we asked them to blink). The deadline for reopening their
eyes was the same as the deadline for eye closure in the eyes closed
conditions (750 ms post cue). Performance was unaffected by condition
(precision: eyes open � 7.16 � 0.41, eyes blinked � 6.66 � 0.40, BFt test

� 1.61; guess rate: eyes open � 0.004 � 0.001, eyes blinked � 0.002 �
.002, BF t test � 1). All EEG recording and analyses, as well as the ap-
proach to statistical inference, were identical to those described above.

Results
Location report precision and guess rate are affected by
eye closure
The precision of the reported stimulus location was reduced
when participants were required to close their eyes (BF � 1000),
an effect enhanced by the presence of a mask (BF � 1000; Fig. 1b).
This suggests that the representation of location without the sup-
port of continued external visual input is less precise, especially
when masked. Although guess rate was extremely low in all con-
ditions, there was a small decrease in guessing when participants
were required to close their eyes during retention (BF � 7). Mod-
ulation of recall precision by eye closure is inconsistent with evi-
dence that spatial recall, when measured as accuracy, is robust to
eye closure without saccades (Pearson and Sahraie, 2003); how-
ever, a continuous report measure, as in the case of the delayed
estimation task used here, is possibly more sensitive to the effects
of eye closure than discrete measures.

Reconstructions of location representations are temporarily
disrupted by a visual mask and degrade over time with eye
closure
To observe the spatially selective representation of the stimulus
location, an IEM was used to reconstruct spatially selective re-
sponses from topographically specific patterns of alpha band os-
cillations in scalp-recorded EEG (Foster et al., 2016; Samaha et
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al., 2016; van Moorselaar et al., 2018) (Fig. 2a– c). More specifi-
cally, the IEM method used here used a general linear model in
which the topographic pattern of oscillatory activity was re-
gressed onto an a priori defined set of spatially selective channels.
This basis set consists of the expected response of each channel to
each location as expressed in arbitrary units; that is, the hypoth-
esized response function of each spatially selective channel. The
shape of the hypothesized function resembles that of a tuning
function as observed in neural population responses, where the
channel is activated the most in response to its unique preferred
location with decreasing activation at increasingly distant locations,
and is recreated as a half sine function raised to some power. The
resulting regression weights, trained and tested using k-fold cross-
validation, reflect the pattern of neural activity particular to each
spatially selective channel; that is, only that variability predicted by
the basis set. The product of the weights and the observed neural
activity yields an estimate of the response in each spatially selective
channel; that is, the representation of location.

There was evidence of a spatially selective response, centered
on the stimulus location, in the alpha band following stimulus
presentation under all conditions. The spatially selective re-
sponse emerged 	200 ms after stimulus onset, around the time
when initial effects of covert shifts in spatial attention have pre-
viously been observed in evoked activity (Martínez et al., 1999; Di
Russo et al., 2003).

The presentation of a masking stimulus disrupted the spatially
selective response beginning 	200 ms after mask onset (see slope

difference between masked and unmasked conditions during the
0.25 to 0.75 s time window in Fig. 2b and the corresponding BF
for the effect of mask Fig. 2d, “mask”). An evoked potential ob-
served at parietal and occipital electrode sites, phase locked to the
onset of the mask, was observed to coincide with this disruption
(Fig. 2e). The magnitude of the mask-evoked response predicted
the magnitude of disruption to the spatially selective response
shortly after mask onset (r (16) � �0.66, BF � 10, and r (16) �
�0.76, BF � 300, for EC�M and EO�M respectively). However,
this disruption was neither complete nor permanent. Although
degraded, evidence for a spatially selective response remained
strong following the mask and returned to similar levels observed
in the absence of a mask 	500 –700 ms after mask onset. This
pattern suggests that while a mask disrupts the retention of a
spatially selective representation, the representation can be re-
covered, even in the absence of external visual input when eyes
were closed.

Unlike the effect evoked by the mask, there was no evidence
that the spatially selective response was disrupted by eye closure
(Fig. 2d, “eyes”). Neither did eye closure evoke a phase-locked
response (Fig. 2e). There was, however, moderate evidence of a
small reduction of the spatially selective response later in the
retention interval 	1000 ms after eye closure, compared with
when eyes remained open. Nonetheless evidence for the spatially
selective representation remained robust throughout the reten-
tion interval when eyes were closed. Thus, the disruptive effect
induced by eye closure on spatially selective representations is

Figure 2. Results of the alpha-based inverted encoding model estimation. a, Estimated neural population response, or “channel” (offset of channel’s preferred location from stimulus location:
�0°, 45°, 90°, 135°, or 180°), response starting 500 ms before onset of stimulus until end of retention period. b, Linear regression weights of estimated channel response folded around 0° offset
(“slope”), indicating the degree of spatial selectivity. c, BF of t test comparing slope at each time point to slope of response estimated using permuted location labels. d, BF of ANOVA for effects of
eye closure and mask on slope. e, ITC indicating stimulus- and mask-evoked potentials and scatterplots of correlation between ITC and slope during the period of the mask-evoked potentials for
masked conditions.
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smaller and delayed compared with the immediate disruptive
effect evoked by the mask.

Importantly, the results of the IEM demonstrate that a spa-
tially selective representation was present in alpha under all con-
ditions in the retention interval to the same degree, except for
some evidence of a slight drop in selectivity at the very end of the
interval when eyes were closed. This would appear to support the
unitary nature of the spatially selective mechanism in alpha os-
cillations: that the representation is robust to changes in input.
However, as the following section will demonstrate, whereas a
spatially selective representation can be recreated from alpha
similarly under both eyes open and eyes closed conditions, this
representation is not encoded by the same pattern (topography
and/or power) of alpha under both conditions.

Reconstructions of location representations are supported by
dual processes
The retention of a spatially selective representation, and its dis-
ruption by a masking stimulus, is evident in alpha band oscilla-
tions under conditions both with and without continued external
visual input. Thus, the patterns of alpha band oscillations that
encode for location are persistently robust throughout the entire
stimulus presentation and retention interval regardless of condi-
tion. However, it is unclear whether the continuous encoding of
location in alpha band oscillations is supported by a single com-
mon process or by multiple distinct processes and which process
or processes supporting the spatially selective response are af-
fected by the disruption of external visual input (i.e., masking, eye
closure, or both).

To observe the dynamics of the process, or processes, support-
ing spatially selective representations under these different con-
ditions we examined the intertemporal and interconditional
generalization of the IEM. The generalization approach can be
used to identify the extent that specific neural codes, reconstruc-
tions of spatial spatially selective responses in this case, are pres-
ent across time and/or conditions (King and Dehaene, 2014).
Models of neural codes trained on the topographic pattern of
neural activity in specific time windows and/or conditions that
can recover similarly reliable spatially selective patterns in other
time windows and conditions would be those that exhibit gener-
alization. Such a pattern would be evidence for a common pro-
cess, as a spatially selective representation can be recreated from
the same pattern of alpha as at another time/in another condi-
tion. In contrast, models trained on the topographic pattern of
neural activity in specific time windows and/or conditions that
fail to generalize would be evidence that the spatially selective
representation is coded by a different topographic pattern of neu-
ral activity predicted by the basis set, i.e., a different process. In
the case of the IEM model, generalization indicates that the beta
weights, representing the linear regression of alpha against the
basis set, are different from one time/condition to another.

When a lack of generalization is observed, it is important to
rule out the possibility that the impaired ability of the model to
reconstruct spatially selective patterns in other time windows
and/or conditions is not merely due to a loss of signal. Impor-
tantly, there was evidence of a spatially selective response at all
time points in all conditions beginning 	200 ms after stimulus
onset, thus any lack of generalization cannot be attributed to a
loss of the signal that encodes for location during these times in
any of the conditions. Although the ability to generalize between
conditions may be impaired by changes in cap placement, imped-
ance, etc. between sessions, this effect should be equivalent be-
tween all conditions at all time points.

When eyes were open and no mask was presented there was
strong evidence of a unitary process supporting the spatially se-
lective response during both stimulus presentation and retention
intervals with continuous external visual input (Fig. 3a, “Train
EO ¡ Test EO”), as there was extensive temporal generalization
both forward and backward in time. This pattern is consistent
with the conclusion that the process maintaining the spatially
selective representation during retention when eyes were open is
also the same process as during stimulus presentation (i.e., dur-
ing selection), and remains static throughout the entire retention
interval. Despite a similarly continuous and robust encoding of
location, this was not the case without continuous visual input,
when eyes were closed (Fig. 3a, “Train EC ¡ Test EC”). Earlier
time points did not generalize forward in time to the end of the
retention interval, nor did later time points generalize backward
in time to the onset of the stimulus despite evidence for spatially
selective responses at those times. Instead, when eyes were closed,
the pattern of temporal generalization supports two processes: a
robust selection process beginning 	100 ms after stimulus onset
and persisting until 	500 ms after eye closure before decaying
and a subsequent process starting around the time of eye closure
(	500 ms after stimulus onset) and lasting the remainder of the
retention interval. At this point, rather than assigning mechanis-
tic labels to these processes (e.g., selection, retention, etc.), we
take a more agnostic approach, labeling these processes in terms
of their ordinal position during the trial sequence and refer to
them as process 1 and process 2, respectively.

Process 1 is interrupted in the period following the presenta-
tion of a mask in both the eyes open and closed conditions (Fig.
3a, “Train EO�M ¡ Test EO�M”/“Train EC�M ¡ Test
EC�M”). With eyes open, process 1 reemerges 	200 ms after
mask, but fails to reemerge with eyes closed. This pattern of gen-
eralization indicates that process 1, possibly a spatial selection
process, is dependent on uninterrupted external visual input, is
disrupted by a visual masking stimulus, and can fully recover a
spatial representation when external visual input remains avail-
able after mask offset (i.e., when eyes remain open). This is sim-
ilar to the observation that a subsequent cue can restore degraded
representations (Sprague et al., 2016); however, in the current
case, there is spontaneous recovery with no aid of additional cues
to location, and only when input remains.

There was strong evidence that process 1 generalized between
eyes open and eyes closed conditions, regardless of mask presence
(Fig. 3b). Process 1, trained in one eye condition and tested in
another, persisted robustly forward in time toward the end of the
retention interval in the eyes open conditions (“Train EC ¡ Test
EO”/“Train EC�M ¡ Test EO�M”), but not in the eyes closed
conditions (“Train EO ¡ Test EC”/“Train EO�M ¡ Test
EC�M”). Although evidence for generalization between eyes
open and eyes closed conditions was stronger and more consis-
tent in the unmasked conditions, process 1 still generalized be-
tween masked and unmasked conditions whether eyes were open
or closed. This pattern suggests that process 1, the process that
overlaps with stimulus processing, is common to all conditions.

Unlike process 1, there was only sporadic, weak evidence that
process 2, which supported the representation of spatial selectiv-
ity during the retention period when eyes were closed, general-
ized to the same period when eyes were open. This may indicate
that process 2 is not entirely absent in conditions with continuous
external visual input, but may also be present to some degree
when such input is available. However, there is evidence that
process 2 generalized between the eyes closed conditions. This
pattern of generalization indicates that process 2 emerges reliably
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when there is an interruption to external visual input, as when the
eyes are closed.

Evidence for dual processes in the alpha-frequency band is
not dependent on the IEM analytic method
The strength of the IEM approach is that the selection of the basis
set is grounded in what is understood about the responses of the
visual system to the feature of interest, in this case spatial loca-
tion. The interpretability of the estimated channel responses is
heavily dependent on the careful selection of the basis set (for a
discussion of these issues please see Liu et al., 2018; Sprague et al.,
2018, 2019; Gardner and Liu, 2019). Here, we use the same basis
set as that used in previous work to describe the nature of alpha
power as a signal for both encoding and maintaining spatial in-
formation in memory (Foster et al., 2016, 2017; van Moorselaar
et al., 2018). However, it is also important to demonstrate that the
results we present here using the IEM method are not the result of
any possible idiosyncrasies of that particular basis set. A common

approach is to use a set of Kronecker delta functions, as the basis
set which assumes that the channel responses are impulse re-
sponses, and then recreate the IEM analysis with the new basis set
(Foster et al., 2016; Bullock et al., 2017). Another approach is to
circumvent the IEM approach altogether and to simply deter-
mine whether the same signal (i.e., alpha power) can be used to
decode the stimulus locations. The assumption in this latter ap-
proach is that the responses to the different stimulus locations are
discriminable in some way that does not necessarily map onto
any specific a priori response profile.

We repeated the generalization analyses using a linear dis-
criminant classifier for location, using classifier accuracy as the
primary dependent variable instead of slope (Fig. 4). The pattern
of results from the decoding analysis was consistent with the
IEM analysis. Within condition, there was strong evidence for
classifier generalization across all time windows in the EO
condition, but not in the EC condition (Fig. 4a); and there was
also evidence that the early spatial selection process is dis-

Figure 3. IEM generalization. a, Temporal generalization within experimental condition. Slopes for a spatially selective response are plotted. Those with less than moderate evidence (BF � 3)
plotted as uniform dark blue. Encoding endurance indicates the sequential extent of temporal generalization backward and forward in time, where BF � 3. Processes 1 and 2 are indicated in the EO
and EC plots. b, Intercondition generalization. Points with moderate or greater evidence (BF � 3) for a difference between intracondition generalizations shown in a and intercondition
generalizations are outlined in white.
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rupted by the mask and can recover later in the retention
interval. The intercondition temporal generalization decoding
analysis (Fig. 4b) also provided evidence consistent with the
IEM analysis, such that classifiers trained during the early time
window generalized across conditions during those same time
windows, but those trained on later time windows did not.

Thus, as with the IEM analysis, the pattern of temporal gen-
eralization in the linear decoding analysis supports a series of two
processes: (process 1) a robust selection process beginning 	100
ms after stimulus onset and persisting until 	500 ms after eye
closure before decaying; and (process 2) a subsequent process,
starting around the time of eye closure (	500 ms after stimulus
onset) and lasting the remainder of the retention interval.

Changes in alpha, if unrelated to the code for the spatially
selective representations, are insufficient to disrupt temporal
generalization
Eye closure results in a well documented increase in alpha power
that is not uniformly distributed, rather it is larger at posterior

electrodes relative to frontal and temporal electrodes (Chapman
et al., 1962; Barry et al., 2007). Here, as expected, alpha power
increased with eye closure (Fig. 5a) and this increase in power was
localized primarily in parietal and occipital electrodes (i.e., over
visual cortex; Fig. 5b). Importantly, these electrodes are also as-
sociated with the largest GLM weights from the IEM (Fig. 8c).
Thus, it is reasonable to wonder whether such changes in alpha
power and/or topography resulting from eye closure could have
influenced the coding of the spatially selective representation in
alpha and its ability to generalize across time and conditions.

To examine this possibility, we again ran the IEM and the
temporal generalization analysis for the eyes open conditions, but
before modeling we added alpha power to simulate the increase
in alpha power observed in the eyes closed condition. Specifically,
in the eyes open conditions we added a random amount of
power, to each electrode, at each time point from 750 (deadline
for eye closure) to 2000 ms after target onset. This random power
was sampled from a normal distribution with the mean of the
difference in power between the eyes closed and eyes open con-

Figure 4. Linear discriminant classifier generalization. a, Temporal generalization within experimental condition. Classifier accuracy is plotted. Accuracy with less than moderate evidence (BF �
3) plotted as uniform dark blue. Encoding endurance indicates the sequential extent of temporal generalization backward and forward in time, where BF � 3. Processes 1 and 2 are indicated in the
EO and EC plots. b, Intercondition generalization. Points with moderate or greater evidence (BF � 3) for a difference between intracondition generalizations shown in a and intercondition
generalizations are outlined in white.
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ditions, and the pooled standard deviation of power in the eyes
open and eyes closed conditions for that electrode at that time
point. This added noise reflects any systematic differences in al-
pha power (Fig. 5a) and topography (Fig. 5b) resulting from eye
closure.

In other words, the added noise recreates the exact changes in
alpha power and topography evoked by eye closure in the eyes
open conditions. However, as the noise is drawn randomly from
the distribution of difference in power and topography between
eyes open and eyes closed conditions, this noise should not im-
pact the temporal generalization of the spatially selective repre-
sentation. This is necessarily the case, as the spatially selective
representation extracted by the IEM is based on the pattern of
alpha that is predicted by the a priori defined set of spatially
selective neural channels (the basis set). In order for any change
to alpha power and/or topography to affect the results of the IEM,
and its generalization, it must necessarily impact the relationship
between the pattern of alpha power and the basis set (i.e., the beta
weights). Changes that are independent of the pattern of alpha
that codes the spatially selective representation will not affect the
result of the IEM or its generalization.

Alpha power in the eyes open conditions with the added noise
resembled that in the eyes closed condition (Fig. 5a). The topog-
raphy of alpha power in the eyes open conditions with the addi-

tional noise also closely resembled that of the corresponding eyes
closed condition during the 750 –2000 ms period (Fig. 5b). The
results of the temporal generalization of the IEM in the eyes open
conditions (both with and without mask) with the added noise
were identical to those observed without (Fig. 5d). This simula-
tion supports the conclusion that changes in alpha power and
topography resulting from eye closure that are layered on top of
the patterns of alpha oscillations coding remembered locations,
but are otherwise independent of the memory activity, are insuf-
ficient to disrupt the IEM reconstructions of remembered loca-
tions and their generalization.

Is process 2 evoked by eye closure or by the absence of
continued visual input?
The purpose of the eyes closed conditions was to examine
whether the absence of continued visual input would affect the
encoding of spatial information in alpha-band activity. However,
as discussed in the previous section, it is possible that the effects
we observe are specific to some phenomenon unique to eye clo-
sure. We have shown that the well documented effect of increased
alpha power associated with eye closure does not account for the
pattern of temporal generalization where process 1 and 2 are
evident. As a further control, we collected data from an additional
independent sample from two conditions (Fig. 6a): (1) the same

Figure 5. Investigation into the role of alpha enhancement with eye closure on temporal generalization within and between conditions. a, Alpha power by condition demonstrating the alpha
enhancement with eye closure and its recreation in the eyes open conditions for the simulation. b, Scalp topography of alpha power by condition demonstrating that alpha is largely occipital in all
conditions, and the simulation of alpha power topography in the eyes open conditions. c, Scalp topography of electrode weight rank, where higher values indicate larger weights for those electrodes
resulting from the IEM. d, Results of the temporal generalization with the simulated recreation of alpha enhancement in the eyes open conditions. The pattern of temporal generalization is
unchanged by this simulated alpha enhancement (Fig. 3).
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eyes open condition as in the main study and (2) an eye-blink
condition.

There was evidence of a spatially selective response, centered
on the stimulus location, in the alpha band following stimulus
presentation in both conditions (Fig. 6b,c). Interestingly, as in the
eyes open masked condition, that spatially selective response was
briefly disrupted by the eye-blink but recovered to a degree indis-
tinguishable from the eyes open condition.

The evidence for a unitary process (process 1) was replicated
in the eyes open condition, and, again as in the eyes open masked
condition, that same process was evident throughout the eye-
blink condition except for the brief disruption following the blink
(Fig. 6d). Importantly, we did not observe the pattern that would
have indicated the emergence of process 2 in the eye-blink con-
dition, as we did in the eyes closed conditions of the main study.
Thus, we conclude that the emergence of process 2 is not a result
of eye closure, but rather the continued absence of visual input
during the retention interval.

What is different between process 1 and process 2?
To address this question, we first investigated whether there were
any differences in the topography of alpha power as a function of
condition and time window; that is, either those times overlap-
ping with process 1 (during stimulus presentation) or process 2
(retention interval). Given previously reported results we should
expect that alpha power is greater at electrode sites ipsilateral to
the cue location compared with contralateral sites, indicating that
spatial attention/memory modulated the topographical distribu-
tion of alpha (Worden et al., 2000; Sauseng et al., 2005; Kelly et al.,

2006; Thut et al., 2006). To that end, we examined alpha lateral-
ization as a function of condition and time window.

There was significant alpha lateralization such that alpha
power was greater at ipsilateral sites than at contralateral sites
(effect of laterality, BF � 231.85; Fig. 7a). Alpha lateralization was
greater for eyes open conditions than eyes closed conditions (in-
teraction of eyes and laterality, BF � 18.64; Fig. 7b). The lateral-
ization of alpha was also reduced during the time window
overlapping with the emergence of process 2 relative to that over-
lapping with process 1 (interaction of time window and laterality,
BF � 79.88). However, the effect of eyes did not modulate the
effect of time window on laterality (all BFs � 1). Thus, there is no
difference in the lateralization of alpha between eyes open and
eyes closed conditions unique to the retention period, which
could possibly account for the difference between process 1 and 2.

Within the context of the analytical approach we used here
(IEM), the difference between process 1 and process 2 is that the
pattern of GLM weights across electrodes generated by the IEM
differs between process 1 and process 2 in the eyes closed condi-
tions, but not within process 1 and process 2. Indeed in the eyes
open condition there is no consistent change in the weights be-
ginning at 	300 ms after stimulus onset - corresponding to pro-
cess 1 (Fig. 8a). In contrast, in the eyes closed condition there are
two separate time windows during which there is no consistent
change in weights: the first from 	300 to 900 ms after stimulus
onset, and the other from 	900 to 2000 ms. These two time
periods approximately correspond to the two processes evident
in the temporal generalization of the IEM. From the first time
window, possibly equating to process 1, to the second time win-

a b

c

d

e

Figure 6. Control study into the effects of eye closure (blink). a, Trial procedure for each experimental condition. b, Estimated neural population response, or “channel” (offset of channel’s
preferred location from stimulus location: �0°, 45°, 90°, 135°, or 180°), response (alpha-band power) starting 500 ms before onset of stimulus until end of retention period. c, Linear regression
weights of estimated channel response folded around 0° offset (“slope”), indicating the degree of spatial selectivity. d, BF of t test comparing slope at each time point to slope of response estimated
using permuted location labels. e, Results of temporal generalization.
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dow, possibly equating to process 2, weights on average moved in
the negative direction.

Weights were more dynamic, showing greater absolute change
over time, in the eyes closed conditions (Fig. 8b), especially dur-
ing the retention interval, than in the eyes open conditions. To
examine the topography of the change in weights over time dur-
ing the retention interval we ranked the electrodes according to
absolute change in weight between the two time points of every
sample pair in the temporal generalization matrix. We then av-
eraged these rankings over the generalization matrix during the
period from 750 to 2000 ms. For both eyes open and eyes closed
conditions parietal and occipital electrode sites were consistently
ranked highest for weight change (Fig. 8c). These electrodes also
consistently rank highest in terms of absolute weight in the IEM
(Fig. 8d). This suggests that the differences in weights between
process 1 and process 2 are more likely to be located at parietal
and occipital electrode sites, although the exact nature and mean-
ing of these weight differences is unknown.

Discussion
Alpha oscillations are the predominant systematic and recurring
voltage fluctuation in the human electroencephalogram and were
first described by Berger (1930). Although alpha oscillations were
initially considered to represent a low arousal state (e.g., “cortical
idling”; Adrian and Matthews, 1934; see also Pfurtscheller et al.,
1996), it is now clear that oscillations in the 8 –14 Hz range play a
key role in perception and cognition, perhaps as a mechanism for
inhibition (Jensen and Mazaheri, 2010; Klimesch, 2012), al-
though this view has been challenged recently (Foster and Awh,
2018). Selective attention to, and retention of, behaviorally rele-
vant locations can both be measured via alpha oscillations
(Worden et al., 2000; Sauseng et al., 2005; Kelly et al., 2006; Thut
et al., 2006; Medendorp et al., 2007; Foster et al., 2016, 2017;

Samaha et al., 2016; van Moorselaar et al., 2018), suggesting that
alpha oscillations represent the functioning of a unitary, or at the
very least a shared, mechanism for spatial representation in-
volved in both attention and memory. The evidence presented
here, regardless of analytic approach (encoding [IEM] or decod-
ing [linear discriminant classification]), however, suggests that
alpha does not support a single unitary cognitive mechanism, but
rather that there are at least two distinct processes that support
the selection and retention of behaviorally relevant locations that
operate within the alpha-frequency band: one that is fast and
continuous, supporting selection of information from the sen-
sory environment and that is disrupted by masking and no sus-
tained visual input (process 1); and a second that is delayed
relative to the first, emerging upon the cessation of sustained
visual input (process 2).

Alternatives
Although the present results are consistent with the notion that
alpha supports at least two distinct processes supporting the
mental representation of behaviorally relevant locations, facets of
the experimental design introduce known artifacts that may ap-
pear as confounds. First, the mere closing of the eyes results in a
robust and reproducible increase in alpha power that varies sys-
tematically across the scalp, being larger at posterior electrodes
than at other electrodes (Fig. 5a). These dramatic modulations in
alpha oscillations, the signal encoding spatially selective repre-
sentations, are an obvious candidate for the disruption to inter-
temporal generalization. Importantly, when alpha power and
topography in the eyes open condition was made to resemble that
of the eyes closed condition during the retention interval as noise,
the results of the temporal generalization are unchanged (Fig.
5b). This simulation demonstrates that changes in alpha power
and topography, such as those that follow eye closure, cannot

Figure 7. a, Topography of normed alpha power during process 1 and process 2 time windows as a function of spatial location and condition. Alpha power is normalized to the range of alpha at
P-O electrode sites (i.e., proportion of max value of alpha power among P-O electrodes for that condition) to be able to observe local topography for those critical sites. b, Alpha lateralization index
(alpha power at ipsilateral sites � contralateral sites/ipsilateral � contralateral) by condition and time window overlapping with process 1 (T1 � 198 –250 ms) or process 2 (T2 � randomly
selected 52 ms window from 750 to 2000 ms).
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influence the results of the IEM, or its temporal generalization,
when uncorrelated with the basis set (i.e., unrelated to the pattern
which encodes location). Thus, it is unlikely that the lack of tem-
poral generalization reflects a contamination of alpha oscillations
that actually represent a unitary mechanism, rather we argue that
the pattern of temporal generalization (and lack thereof) is evi-
dence for at least two alpha-based processes involved in the selec-
tion and retention of spatial information.

Eye closure also results in large ocular artifacts that propagate
across the scalp. Thus, it is reasonable to suggest that the impaired
generalization is due to residual artifacts due to eye closure. How-
ever, we demonstrated in an independent control study that mere
eye closure (as when blinking), and any artifacts associated with

that ocular event, do not yield the same pattern of temporal gen-
eralization evident in the eyes closed conditions (Fig. 6); rather,
the temporal generalization matrix in the eye-blink condition
resembled that of the eyes open-masked condition, i.e., a single
process temporarily disrupted.

The results of the eye-blink control study also address the
possibility that the difference between the eyes open and closed
conditions is attributable to a dual-task demand of having to
close their eyes, i.e., as reconstructions of remembered spatial
locations are sensitive to demands on attention (van Moorselaar
et al., 2018). Although it is true that participants had to close their
eyes and wait for the tone to give the response, participants expe-
rienced a similar level of demand in the eye-blink condition.

Figure 8. Investigation into the nature of the weight change. a, In the eyes open condition, average weight change was	0 throughout the retention interval (iii–v), following the initial average
increase in weights from 250 ms after stimulus onset forward in time (i and ii). This same increase in weights was also present in the eyes closed condition (i and ii). However, there was an additional
average change unique to the eyes closed condition: a decrease from around the time of eye closure (	300 to 750 ms after stimulus onset) forward into the rest of the retention interval (iv).
Otherwise average weight change in the eyes closed condition was 	0 (iii and v). b, Weights were more dynamic throughout the trial in the eyes closed condition, including before eye closure, than
in the eyes open condition. c, Changes in the eyes closed condition after eye closure, although greater than that during the same time period in the eyes open condition, are largely in parietal and
occipital electrodes as they are in the eyes open condition.
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Furthermore, all conditions required participants to hold the in-
formation in memory and wait until the tone indicated it was
time to give the response, and even the eyes open conditions
made an additional demand (maintain fixation). Thus, the con-
ditions are quite closely matched in terms of divided attention
demands, making this account no more, and perhaps less likely
than the guaranteed effect that continuous external visual input
was absent in one condition and not the other.

This alternative also predicts that the reconstructed profiles of
spatially selective representations in those conditions with in-
creased demands on attention (i.e., eyes closed), would be de-
graded relative to conditions without the divided attention
demands (i.e., eyes closed). However, the results, as depicted in
Figure 2, reveal that the slopes of the reconstructed spatially se-
lective channel responses in the eyes open and eyes closed condi-
tions do not differ during that period when process 2 emerges.
Thus an account based on differential divided attention demands
is not a viable alternative explanation of our findings.

In addition to the issue of noise, and related to the issue of
reduced SNR, losses in temporal generalizability could also be
attributed to unobserved losses in the signal of interest following
eye closure. However, the pattern of temporal generalization in
the eyes closed condition, in this case, cannot be explained by
signal loss. The within condition IEMs during this time window
reliably reconstruct the spatial location held in memory in the
eyes closed condition to the same degree as in the eyes open
condition. Thus, the signal that carries the location information
is present to the same extent in the eyes closed condition as in the
eyes open condition during the same period of the retention
interval when the loss of temporal generalization occurs.

Conclusion
Based on the collection of evidence presented here, we suggest
that mental representations of stimulus location are retained via
at least two distinct processes coded in alpha band oscillations.
When visual input continues to be available, spatially selective
representations can be supported and even recovered by the same
process present when a location is initially selected and may be
mediated by “attention-based rehearsal” (Awh et al., 1998, 1999;
Postle et al., 2004) of the external sensory environment, as has
been observed previously (Foster et al., 2016, 2017; van Moorse-
laar et al., 2018). However, when visual input is not available, a
process possibly based on internal selection from information
encoded in memory (Chun et al., 2011; Kiyonaga and Egner,
2013) emerges to support the ongoing spatial representation. To
the extent that the topographic pattern of alpha oscillations is
reflective of the activity in retinotopically mapped brain regions
(Worden et al., 2000; Kelly et al., 2006; de Munck et al., 2007),
then our results suggest that these areas are differentially acti-
vated when eyes are closed than when eyes are open. This differ-
ential involvement may be the result of local changes in patterns
of activity (e.g., local patterns of inhibitory activity) or from per-
turbations from other brain areas. The latter possibility would be
consistent with recent evidence that initial selection of remem-
bered information is supported by oscillatory activity in prefron-
tal and parietal/occipital locations, while the reactivation of that
information in memory relies a network of occipital/temporal
locations (Quentin et al., 2019).
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