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Abstract
Human brain tissue is a heterogeneous material, consisting of soft outer grey matter tethered
internally by stiffer cords of white matter. These white matter tracts conduct electrical impulses
between grey matter regions, thereby underpinning neuronal communication. Understanding the
material properties of white matter is thus crucial for understanding brain function generally.
Efforts to assess white matter microstructure are currently hampered by the inherent limitations of
reconstruction by diffusion imaging. Techniques typically represent white matter structures with
single scalars that are often difficult to interpret. Here, we address these issues by introducing tools
from materials physics for the characterization of white matter microstructure. We investigate
structure on a mesoscopic scale by analyzing its homogeneity and determining which regions of
the brain are structurally homogeneous, or ‘crystalline’ in the context of materials physics. We find
that crystallinity provides novel information and varies across the brain along interpretable lines of
anatomical difference, with highest homogeneity in regions adjacent to the corpus callosum, a
large interhemispheric tract. Furthermore, crystallinity is markedly reliable across iterative
measurement, yet also varies between individual human volunteers, making it potentially useful
for examining individual differences in white matter along several dimensions including sex and
age. We also parcellate white matter into ‘crystal grains’, or contiguous sets of voxels of high
structural similarity, and find overlap with a common atlas of distinct white matter areas. Finally,
we characterize the shapes of individual diffusion signatures through another tool from materials
physics—bond-orientational order parameters—to locate fiber crossings and fascicles. Our results
provide new means of assessing white matter microstructure on multiple length scales, and open
multiple avenues of future inquiry involving soft matter physics and neuroscience.

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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1. Introduction

Brain tissue is a heterogeneous material whose constituent components, grey matter and white matter, have
distinct physical properties and distinct functions. Grey matter, distributed near and on the cortical surface,
performs a majority of the cellular computation necessary for perception, attention, memory, thought,
language, and general human functioning [1]. Communication between cortical areas occurs in part by the
conduction of electrical impulses along stiffer cords of underlying white matter [2, 3], whose architecture is
a critical constraint on information transmission in the brain. White matter microstructure thus enables
normal brain function, cognition, and behavior [4, 5]. Disruption of these connections is hypothesized to
contribute to a variety of pathologies that may arise in abnormal development and following injury and
aging [6–10]. Reliable and thorough characterization of the material properties of white matter is
accordingly a scientific challenge of enormous import. That these measurements are non-invasive is also
critical for meeting ethical standards when studying white matter in humans. Accurate and detailed
measurements of white matter in living human brains enables better detection of disease and contributes to
the growing body of knowledge regarding the influence of development and aging on brain structure.

Diffusion MRI provides a non-invasive means of characterizing microstructure in biological tissues
[11–13]. In diffusion imaging, the orientation of myelinated white matter, and proxies for its
microstructural properties, are typically estimated in millimeter-scale regions (or voxels) of the brain based
on observed magnetic resonance signal changes related to water diffusion. White matter orientation
distribution functions (ODFs) in each voxel are constructed from three-dimensional probability densities of
water diffusion via radial integration, such that the magnitude of the ODF at any point on the unit sphere is
proportional to the water diffusion probability in that direction [14]. ODFs in each voxel thus constitute
local structural signals that can be analyzed further, including for the tracking of large white matter fascicles
[15] between cortical regions, or the monitoring of the loss of white matter integrity that often accompanies
aging [16, 17] or the progression of neurodegenerative diseases such as mild cognitive impairment [18],
Alzheimer’s disease [8, 19], multiple sclerosis [8, 20], ALS [21], or general Wallerian degeneration [22].

Strategies for the characterization of white matter structure using diffusion imaging data, each with their
own advantages and drawbacks, abound. Many techniques reduce dimensionality by representing aspects of
intra-voxel structure such as anisotropy as single voxel-wise scalars [14]. These scalars, however, are often
difficult to interpret or rely on oversimplified tensor models of diffusion. Other techniques measure white
matter coherence on larger, inter-voxel length scales through the calculation of voxel-wise scalars such as the
lattice index [23] and tensor overlap [24]. However, these metrics also rely on simple tensor models for
diffusion that do not fully capture its more complicated phenomenology. A notable exception is so-called
local diffusion homogeneity, which represents inter-voxel white matter coherence in a model-free manner
[17]. Instead, however, this coherence metric requires substantial data for its calculation as it incorporates a
large amount of information collected during diffusion imaging.

Here, we introduce tools from materials physics to characterize white matter coherence and other
features in a manner that is intuitive, simple to compute, and model-independent. Materials science, and
more specifically soft matter physics, is an ideal lens through which to examine white matter
microstructure: like neuroimaging, soft matter physics is often concerned with (usually messy) local
structure and its relationship to macroscale (material) function. We calculate structural homogeneity (a
metric commonly used in soft matter to characterize particle ensembles) as a measure of white matter
coherence in the human brain. Our approach complements prior efforts to assess coherence [25], but differs
from those efforts by utilizing techniques explicitly grounded in materials physics to understand brain
organization. We determine which regions of the brain are structurally homogeneous, or ‘crystalline’ in the
context of materials science, and which are structurally heterogeneous, or ‘disordered’. We find that white
matter homogeneity, or crystallinity, provides information about neuronal architecture that is distinct from
that provided by other structural measurements often used in the neuroimaging community such as
generalized fractional anisotropy (GFA) and mean diffusivity (MD). White matter crystallinity is also
reliable and reproducible across multiple imaging scans of the same subject, but variable across subjects.
Thus, this novel metric may be a useful marker to distinguish individual differences in white matter
microstructure. In general, crystallinity varies throughout the brain, and is highest for its most internal
white matter regions, including the corona radiata, internal capsule, corpus callosum, and uncinate
fasciculus. These are white matter tracts situated near the center of the brain with a variety of connective
purposes [2, 26]. Several of these tracts are also particularly vulnerable to pathologies including
schizophrenia, bipolar disorder, and autism spectrum disorder [27]. Additionally, we find that parcellation
of white matter into ‘crystal grains’, or spatially contiguous sets of voxels of high structural similarity,
results in a new white matter partition that has partial overlap with a commonly used white matter atlas,
but incorporates the distinct local morphologies of brain tissue. Taken together, our results illustrate that
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crystallinity is a fruitful new means of analyzing the structure of white matter, with multiple future
promising directions.

Crystallinity inherently characterizes white matter structure on a super-voxel level; however, structural
characterization on the smaller, intra-voxel scale is a complementary and active research thrust within
diffusion imaging. Shape characterization of the diffusion signal is of particular interest. Previously
proposed metrics such as the mode of anisotropy [28] give some indication of diffusion signal shape, but do
not capture higher-order symmetries of the signal. For this purpose, tools from soft matter are also useful.
We use bond-orientational order parameters, originally developed to measure symmetries of particle
clusters in supercooled liquids and glasses [29], to provide a low-dimensional characterization of ODF
shape. We show that these orientational order parameters are sensitive to local white matter symmetries and
provide useful, rotationally-invariant information regarding where white matter tracts are especially aligned
or where they cross. Our results provide further evidence that approaches grounded in materials physics are
useful for the structural characterization of the human brain as a complex soft material on multiple length
scales. We look forward to future interdisciplinary extensions of this work, bridging soft matter physics and
neuroimaging.

2. Methods

2.1. Diffusion image analysis
We use two datasets throughout this paper that each have particular strengths relevant to our distinct goals.
The first, used to illustrate our methods, is the publicly available example of a high angular resolution
diffusion image (the ‘Stanford HARDI’ dataset) with 160 gradient directions, distributed with the Python
module dipy [30]. We estimate fiber orientation distributions (FODs) on the Stanford HARDI data using
constrained spherical deconvolution [31] and extract FOD peaks using dipy. An example slice of these
FODs in an array of neighboring voxels is shown in figure 1(A).

We chose a second data set to showcase the performance of our methods in detecting individual
differences reliably across scans. Specifically, we use an extensive set of diffusion images collected as part of
the cognitive resilience and sleep history (CRASH) study [32]. In addition to a host of other measurements,
the CRASH study gathered 8 diffusion MRI scans for 30 subjects, taken bi-weekly. Subjects (13 males; 17
females) ranged in age between 18 and 35 years, with a mean age of 23 years. The diffusion acquisitions
used a bipolar pulse sequence to sample a Cartesian grid in q-space at 258 coordinates with a maximum
b-value of 5000 s mm−2 with 1.8 mm isotropic voxel size. Images were preprocessed using QSIPrep [33],
which included MP-PCA denoising [34] and head motion correction. Preprocessed images were
reconstructed using generalized q-sampling imaging (GQI) [35]. GQI ODFs and peaks were calculated in
DSI studio, and a group threshold of 0.02 was used to threshold ODF peaks. T1-weighted anatomical scans
were registered to the MNI 2009 asymmetric nonlinear template using ANTs [36].

2.2. Crystallinity
We characterize diffusion signal homogeneity across neighboring voxels by computing the ‘crystallinity’ of
each ODF. Crystallinity measures the similarity between the structural environment of each voxel
(consisting of the peak vectors extracted from each ODF signal) and the environments of its neighboring
voxels. Voxels of especially high crystallinity contain ODF peaks that are especially similar, on average, to
ODF peaks in neighboring voxels. Voxels of especially low crystallinity contain ODF peaks that are
dissimilar from ODF peaks of neighboring voxels; these voxels are ‘disordered’ in the language used by the
soft matter physics community. To quantify crystallinity, we measure the average deviation between the
ODF peak vectors of each voxel and those of its neighbors using an environment-matching module in the
open-source analysis toolkit freud [37]. We then normalize this deviation by the overall diffusion signal
strength in the appropriate voxel, creating a dimensionless parameter (Δ̃) that acts as a proxy for
crystallinity.

We now provide the mathematical details of this process. For all neighboring voxel pairs i and j (defined
as neighbors if the voxel boundaries share faces, edges, or vertices), we measure the root-mean-squared
deviation, Δij, between their environments:

Δij =
√
〈δ2

mm′ 〉. (1)

This calculation is shown schematically in figure 1(B). In the above expression, δmm′ ≡ |rim − rjm′ | is the
magnitude of the vector difference between voxel i’s mth ODF peak vector rim and voxel j’s m′th ODF peak
vector rjm′ . The average 〈δm,m′ 〉 is taken over the mapping (m, m′) found that greedily minimizes Δij. To
obtain this mapping, we consider each vector in the set {rjm′ } in turn, and pair it with the closest vector in
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Figure 1. Crystallinity characterization methods used to analyze diffusion images of the human brain. (A) Slice of a sample
diffusion image, showing the ODF signals reconstructed in each voxel. Each ODF surface is colored according to signal
magnitude using a default rendering technique in the dipy Python package: surface points of large ODF magnitude (thus high
water diffusion probability) are colored more yellow, while surface points of small ODF magnitude (thus low water diffusion
probability) are colored more purple. (B) Schematic of our method for ODF similarity characterization via peak vector
matching. Peak vectors are extracted from ODF distributions, and these vector sets are compared to find the best match between
them, characterized by the lowest value of Δij. (C) The identical diffusion image slice as that of panel (A), with voxels colored
according to ODF homogeneity (crystallinity) according to the colorbar shown. Voxels with lower values of Δ̃ are lighter (more
crystalline), and voxels with higher values of Δ̃ are darker (less crystalline). (D) The identical diffusion image slice as that of
panel (A), with voxels colored according to segmentation by crystal grain. Voxels are colored identically if they are members of
the same crystal grain. Voxels colored black are members of crystal grains of 10 or fewer voxels, or are not members of a crystal
grain at all. Otherwise, color has no additional meaning.

the set {rim} that is unpaired. If voxels i and j do not have equivalent numbers of ODF peak vectors, then
we first augment the smaller set of vectors with 0 vectors until both sets are the same size before finding the
(m, m′) mapping. Augmentation in this manner provides a means of directly comparing peaks one-to-one
without losing any peak information or relying on additional thresholding.

From the set of root-mean-squared deviations Δij between the environment of voxel i and each of its
neighbors j, we can define the normalized average deviation of voxel i’s environment from those of its
neighbors:

Δ̃i =
〈Δij〉
〈rim〉

. (2)

This measure is our proxy for crystallinity for each voxel. The numerator is the average Δij between voxel i
and its Ni neighbors, 〈Δij〉 ≡ 1

Ni

∑
jΔij. The denominator is the average magnitude of the Mi ODF peaks in

voxel i, 〈rim〉 = 1
Mi

∑
m rim, excluding any augmented 0 vectors. The parameter Δ̃i is thus normalized such

that it gives the average deviation of the diffusion signal i from its neighboring signals as a fraction of that
signal’s average magnitude. This measure is low when crystallinity is high, and vice versa.

To gain an intuition for the spatial distribution of the measure Δ̃, we show this value for each voxel in a
slice through the example HARDI image described previously (figure 1(C)). Each voxel is colored according
to Δ̃ such that those with lower values of Δ̃ (i.e. more crystalline) are lighter. Note that white matter
structure can be clearly visualized by this metric. Other interesting structural features emerge as well, such

4



New J. Phys. 23 (2021) 073047 E G Teich et al

as voxels that mark ‘grain boundaries’ between spatially contiguous sets of voxels of high structural
similarity (or ‘crystal grains’).

2.3. Crystal grain parcellation
We also use structural similarity between neighboring voxels to construct white matter parcellations that
reflect homogeneous regions of brain tissue. We refer to these structurally similar regions as crystal grains,
and formally identify them as strongly intra-connected submodules, or communities, in a network
representation of each brain scan. In this representation, each voxel is a node of the network, and edges
between nodes are weighted according to the structural similarity of the corresponding voxels. Edges only
exist between node pairs that correspond to neighboring voxel pairs. Specifically, the edge weight Wij

between nodes i and j is defined as:

Wij =
1

Δij

Nij
+ 1

. (3)

The parameter Δij is the root-mean-squared deviation between the diffusion signals of voxels i and j as
defined previously. We note that we set Δij = Δji for computational efficiency when computing this
quantity over all neighbor pairs, and this equality always holds if Δij is a true global minimum. The
parameter N2

ij ≡ 〈r2
im + r2

jm′ 〉, with the average taken over the mapping
(
m, m′) found that greedily

minimizes Δij. As before, rim is voxel i’s mth ODF peak vector. The parameter Nij is thus a normalization
factor that represents the root-mean-squared deviation over all paired vectors if each pair of vectors was
orthogonal. When diffusion signals are structurally identical, that is, Δij = 0, then edge weight is highest
(Wij = 1). As the structural similarity between diffusion signals decreases and Δij increases, the edge weight
decreases to 0.

Within this network representation, we identify crystal grains of homogeneous structure by using a
Louvain-like locally greedy algorithm [38] to identify communities of nodes (voxels) that are densely
intra-connected and sparsely inter-connected [39]. The algorithm maximizes the so-called modularity [40]
Q of the network, which is defined as:

Q =
∑

ij

[
Wij − γPij

]
δ(ci, cj). (4)

The scalar Wij is the edge weight between nodes i and j, Pij is the expected edge weight between those nodes
in a suitably-chosen null model, δ(ci, cj) is a Kroenecker delta that is 1 if i and j are in the same community
(i.e. if community indices ci = cj) and 0 otherwise, and γ is a free scalar parameter. The parameter γ
controls the resolution over which communities are detected. As γ goes to 0, Wij − γPij becomes positive
for all edge weights, and so maximizing Q consists of grouping all connected nodes into the same
community. In contrast, higher γ provides a threshold for which edge weights will contribute positively to
Q, and effectively filters communities such that they consist only of the most strongly-connected nodes.

Many different null models are employed in the literature, each specific to the data and scientific
question of interest. Here, we use a geographical null model [41, 42] previously utilized to detect
communities in spatially-embedded and locally-connected networks. In this model, Pij = ρAij, where
ρ = 〈Wij〉 is the mean edge weight of the network and Aij is 1 if nodes i and j have an edge between them
and 0 otherwise. This null model effectively encodes the physical constraints experienced by the system:
namely, that each voxel is only structurally compared with its spatially adjacent neighbors.

Maximization of Q at a specific value of γ is accomplished by varying c, the partition of network nodes
into communities. In our context, this process results in the clustering of voxels into spatially contiguous
communities whose members are more structurally similar to each other than the scaled average similarity
given by γ〈Wij〉. Each community is a ‘crystal grain’. In practice, the algorithm that maximizes Q is not
guaranteed to find the global optimum [43], so we perform modularity maximization 5 times and use the
clustering that results in the maximum Q value.

We provide intuition for how crystal grains subdivide white matter by showing a crystal grain partition
c, obtained from modularity maximization at γ = 1.1, in a slice through the example HARDI image
described previously (figure 1(D)). Voxels are colored identically if they are members of the same crystal
grain. Grains reflect regions of white matter with similar structure; note the large grains that correspond to
the corpus callosum, superior longitudinal fasciculus, and surrounding regions. Here we have used a single
γ resolution parameter for illustrative purposes. It remains of interest, however, to study the structure,
morphology, and location of crystal grains over a range of resolutions. Accordingly, in a later section of this
paper devoted to generating white matter parcellations according to crystal grain, we vary γ and show that
across a range of γ values we obtain parcellations that are statistically similar to a white matter atlas
currently used in the literature.
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The white matter parcellation against which we choose to compare our results is the commonly
referenced Johns Hopkins University (JHU) atlas [44], which was generated by hand segmentation of an
average diffusion MRI tensor map over 81 adults. We quantify the similarity between our parcellations (over
a range of γ values) and the JHU atlas via two distinct measures of partition overlap: the adjusted RAND
(adj. RAND) index [45] and the adjusted mutual information (adj. MI) [46] between the partitions. The
RAND index between two partitions measures the fraction of pairs of elements in the system whose mutual
classification is in agreement across both partitions; that is, the fraction of element pairs determined in both
partitions either to belong to the same cluster or to belong to different clusters. The mutual information
between two partitions gives the difference between the entropy of one partition and the conditional
entropy of that same partition given the other; in other words, it measures the reduction in the information
needed to encode one partition given that the other is known. Adjusted versions of both measures correct
for chance according to a permutation model, and normalize such that both measures are bounded above
by 1, corresponding to exact agreement between partitions. Calculation of both metrics is performed using
the Python module scikit-learn [47].

2.4. Other diffusion metrics
We demonstrate the novelty of the information communicated by our crystallinity parameter Δ̃ by
comparing it to four common per-voxel structural metrics. Here, we briefly describe these parameters: GFA,
fractional anisotropy determined from diffusion tensor fitting (DTI-FA), the isotropic diffusion component
(ISO), and MD. GFA, the standard deviation of the ODF signal over its entire surface (normalized by the
root-mean-square of the signal over its surface), is a unitless parameter that indicates the degree of
anisotropy in the diffusion signal [48]. DTI-FA is very similar in spirit to GFA; it is the standard deviation
of the eigenvalues of the diffusion tensor, normalized by their root-mean-square [49]. ISO, the isotropic
part of the ODF signal, is simply the minimum value of the ODF in each voxel [35]. MD, the mean of the
eigenvalues of the diffusion tensor in each voxel, characterizes the overall strength of the diffusion signal
[49].

2.5. Test-retest reliability and variability
We confirm that our crystallinity metric Δ̃ is well-behaved as a structural marker by calculating statistical
proxies for reliability, reproducibility, and across-individual variability of Δ̃ and other diffusion metrics.

Reliability. To measure reliability, we use two variants of the intra-class correlation coefficient (ICC). In
general, the ICC reports variance of interest (in our case, variance of the metric across subjects) as a
fraction of total variance. When this fraction is high, the metric reliably differentiates individuals from each
other, because variance across individuals is the majority contributor to the total variance. We consider both
per-voxel and per-image measures of ICC; the former is useful to indicate the spatial variance of reliability
throughout the brain, while the latter condenses the reliability of the metric over an entire scan into one
easily-interpretable scalar.

The per-voxel ICC variant that we calculate, usually denoted by ICC(3, 1) [50], uses a model with fixed
imaging session effects and random subject effects to describe the value of each metric in each voxel; in
other words, total variance does not include effects due purely to across-scan variability. The quantity
ICC(3, 1) can thus be thought of as a measure of consistency across scans, rather than absolute agreement
across scans [51]. Note that throughout the rest of the paper we will use the terms ‘(imaging) session’ and
‘scan’ interchangeably.

We calculate ICC(3, 1) for each voxel as follows:

ICC(3, 1) =
MSBS − MSE

MSBS + (k − 1)MSE
. (5)

Here MS refers to the mean sum of squares, which we measure using a two-way analysis of variance
(ANOVA). Specifically, MSBS is the between-subject mean sum of squares, and MSE is the residual mean
sum of squares, after accounting for between-subject and between-scan sums of squares. The quantity k = 8
is the number of scans per subject.

We use the image intra-class correlation coefficient (I2C2) [52] as a second, per-image measure of
reliability. The I2C2 is a generalization of the ICC:

I2C2 = 1 − Tr(KU)

Tr(KW )
. (6)

Here KW is the covariance matrix of the image vector W, where each entry of W is the value of the
metric in each voxel, concatenated over all subjects and all sessions. The matrix KU is the covariance matrix
of the measurement error vector U over voxels, concatenated over all subjects and all sessions. We calculate
I2C2 for all metrics using the R package that accompanies reference [52].
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Reproducibility. To measure reproducibility, or agreement of each metric across multiple scans of the
same subject, we calculate the within-subject coefficient of variation, CVWS, for each voxel:

CVWS =
1

μ

√
1

n

∑
i

1

k − 1

∑
j

(
Xij − X̄i

)2
. (7)

Here, n is the number of subjects, k is the number of scans per subject, Xij is the value of the metric
measured in subject i and scan j, X̄i ≡

∑
j Xij/k is the across-scan average of the metric for subject i, and μ

is the grand mean of Xij over all subjects and scans. In practice, we calculate CVWS using a two-way
ANOVA: CVWS =

1
μ

√
MSWS, where MSWS is the within-subject mean sum of squares. When CVWS is low,

within-subject variation is low compared to its mean, and reproducibility is high.
Individual variability. We finally measure across-individual variability by calculating the

between-subject coefficient of variation, CVBS, for each voxel:

CVBS =
1

μ

√
1

n − 1

∑
i

(
X̄i − μ

)2
. (8)

All variables are the same as those defined for CVWS. In practice, we calculate CVBS again via a two-way
ANOVA, and use CVBS =

1
μ

√
MSBS/k, where MSBS is the between-subject mean sum of squares.

2.6. Orientational order parameters
To describe diffusion signal shape within each voxel, we use orientational order parameters that were first
proposed by Steinhardt et al [29] to characterize the symmetries of particle clusters in supercooled liquids
and glasses. Consider that the diffusion signal can be represented as a probability density distribution on the
unit sphere. This distribution, in turn, can be expressed as a linear combination of the spherical harmonics,
a set of basis functions on the unit sphere:

f (θ,φ) =
∞∑

l=0

l∑
m=−l

qlmYlm(θ,φ).

Here, Ylm is the spherical harmonic associated with angular momentum number l and magnetic
quantum number m, and qlm is the projection of f(θ,φ) onto Ylm. Using the Fourier coefficients qlm, we
construct the following orientational order parameter (sometimes also called a Steinhardt order parameter
in the soft matter literature) to characterize the symmetry of the distribution associated with angular
momentum number l:

Ql =

√
4π

2l + 1

∑
m

|qlm|2. (9)

It can be shown that this parameter is rotationally invariant; that is, it does not change under any rigid
rotation of f(θ,φ). A finite collection of Ql parameters for different values of l is thus a
rotationally-invariant, dimension-reduced fingerprint for the associated f(θ,φ) distribution. Rotational
invariance is a useful property for any shape descriptor, because it means the descriptor depends only on
the details of the shape geometry and not on its relative orientation with respect to an arbitrary reference
frame.

3. Results

3.1. Crystallinity measures novel information
We first demonstrate that crystallinity varies across the brain in a meaningful and interpretable way, and
provides new structural information that is not measured by other diffusion metrics commonly used in the
neuroimaging community. We calculate crystallinity in two separate datasets, and compare it to two other
diffusion metrics, GFA and MD, described in the Methods. We choose GFA and MD as our metrics of
comparison because they measure very distinct aspects of the diffusion signal; thus, that crystallinity is
distinct from each of them demonstrates its novelty.

As an initial benchmark, we first compute the crystallinity of each voxel in the example HARDI image
described in the Methods. Figure 2(A) shows three views of the HARDI image, with each voxel represented
as a sphere and colored according to Δ̃, and figure 2(B) shows the corresponding histogram of Δ̃. Regions
of high and low crystallinity clearly emerge, and the corpus callosum, corona radiata, internal capsule, and
anterior commissure appear as regions of high crystallinity. We directly compare crystallinity to common
diffusion metrics by plotting joint distributions of Δ̃ and MD across all voxels, and Δ̃ and GFA across all
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Figure 2. Crystallinity is sensitive to biological microstructure while providing novel information compared to common
measures. (A) Three views of a sample diffusion image, where voxels are represented as spheres and colored according to Δ̃.
(B) Histogram of the Δ̃ values calculated for the voxels of this sample diffusion imaging scan. Bars are colored to illustrate the
coloring scheme used in panel (A). Voxels with lower values of Δ̃ are lighter (more crystalline), and voxels with higher values of
Δ̃ are darker (less crystalline). (C) Joint histograms of Δ̃ against mean diffusivity (MD; left panel) as well as generalized
fractional anisotropy (GFA; right panel), accumulated over the voxels of the sample scan. (D) Three views of a session-averaged
diffusion image for one subject in the CRASH study, with voxels colored according to Δ̃ averaged across scans. (E) Histogram of
session-averaged Δ̃ values calculated for the voxels of this subject. Bars are colored to illustrate the coloring scheme used in panel
(D). (F) Joint histograms of Δ̃ against mean diffusivity (MD; left panel) as well as generalized fractional anisotropy (GFA; right
panel), accumulated over the voxels in one imaging session of the same subject.

voxels (figure 2(C)). The joint distributions show that crystallinity is weakly correlated with MD (Pearson
correlation coefficient ρ = 0.19), and is more correlated with GFA (Pearson correlation coefficient
ρ = −0.69), since voxels of high GFA tend to be more crystalline, with lower values of Δ̃. This correlation
implies physically meaningful information about white matter microstructure on multiple length scales,
since GFA measures structural information within each voxel, whereas crystallinity measures structural
information on an across-voxel length scale. Specifically, the correlation implies that voxels of high GFA
tend to exist within white matter fascicles, where water diffuses in the same direction throughout
neighboring voxels, and they thus have homogeneous structure (and high crystallinity). In contrast, voxels
with lower values of GFA have wider ranges of crystallinity, demonstrating that crystallinity provides
information that is distinct from diffusion anisotropy, especially in areas that do not contain streamlined
white matter.

To demonstrate that crystallinity provides novel information in real datasets, we also analyze diffusion
images collected as part of the CRASH study described in the Methods. We take advantage of the multiple
scans provided for each subject in this dataset to obtain smoother across-session averages of voxel-wise
crystallinity, 〈Δ̃〉scan, which we show in figures 2(D) and (E) for one CRASH subject. This crystallinity brain
map is qualitatively consistent with the one calculated for the example HARDI image (figure 2(A)):
crystalline regions emerge throughout the brain, including the corpus callosum, corona radiata, internal
capsule, and anterior commissure. ‘Grain boundaries’, or voxels of lower crystallinity on the boundary of
regions of higher crystallinity, can also be seen. Note that the Δ̃ distributions shown in figures 2(B) and (C)
and figures 2(E) and (F) exclude outliers of extremely low crystallinity (high Δ̃) for visual clarity; in fact,
outlier values of Δ̃ can be as large as Δ̃ ∼ 7 in both datasets. These outliers are not localized to any
particular anatomical region (supplementary figure S1 (https://stacks.iop.org/NJP/23/073047/mmedia)),
and instead arise simply because of the normalization procedure we use to calculate Δ̃. Values of Δ̃ for each
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ODF signal are normalized by 〈r〉, the average magnitude of that signal’s peak vectors, to
non-dimensionalize Δ̃. As a consequence, signals of small strength 〈r〉 may have outlier values of Δ̃ if they
are neighbored by signals of higher strength. The correlation between low 〈r〉 and large outlier values of Δ̃
is shown in supplementary figure S2 for all scans of all analyzed subjects in the CRASH dataset.

We again compare crystallinity to the structural metrics MD and GFA via joint distributions across
voxels. Figure 2(F) shows distributions for one scan of the subject represented in figures 2(D) and (E). We
find similar relationships between the metrics as those found for the HARDI example (figure 2(C)).
Namely, Δ̃ is less correlated with MD and more correlated with GFA, with lower values of Δ̃ for voxels of
higher GFA. These relationships are quantified in supplementary figure S3, which shows the distribution of
Pearson correlation coefficients between Δ̃ and MD (median ρ = 0.37, interquartile range 0.03), and the
distribution of Pearson correlation coefficients between Δ̃ and GFA (median ρ = −0.58, interquartile range
0.04), collected over all scans of all analyzed subjects. The joint distribution of Δ̃ and GFA in figure 2(F)
shows, even more clearly than the distribution for the HARDI example, that crystallinity and GFA are
correlated at high GFA and low Δ̃ (high crystallinity), reflecting white matter fascicles that contain
structurally similar signatures of anisotropic water diffusion. In contrast, crystallinity and GFA are
increasingly independent metrics as GFA decreases. Voxels of lower anisotropy have larger ranges of Δ̃, and
indeed an entire set of voxels of low GFA ∼ 0.05 has the widest range of Δ̃ values, between Δ̃ = 0 and
Δ̃ = 2. These voxels include non-white matter regions of the brain (supplementary figure S4) that have
more isotropic diffusion signals.

3.2. Test-retest reliability and variability across individuals
To confirm that our crystallinity metric Δ̃ is a well-behaved structural marker whose variation is
meaningful, we assess the reliability, reproducibility, and across-individual variability of Δ̃ and the four
common diffusion metrics described in the Methods, and compare these quantities. We find that
crystallinity is reliable and fairly reproducible, and has higher across-individual variability than the other
common diffusion metrics. Our results together indicate that crystallinity may be useful to distinguish
individual differences in white matter along the dimensions of sex, genetics, and physiology.

We measure all diffusion metrics in 8 scans each of 25 subjects in the CRASH study, and calculate
statistical quantities for each metric that are proxies for reliability, reproducibility, and across-individual
variability, in the spirit of prior work [53–56]. Details of each statistical quantity can be found in the
Methods. We then warp the scalar fields for each metric and each scan into a master template space via the
nearest-neighbor interpolation method in ANTs [36], to facilitate voxel-wise comparison across subjects.

Reliability. We find that Δ̃ is very reliable across subjects according to both ICC(3, 1) and I2C2
(figures 3(A) and (B)). The value of I2C2 for Δ̃ over all subjects is 0.801, only lower than the value of I2C2
for GFA (0.871) and higher than I2C2 values for DTI-FA, ISO, and MD (0.798, 0.776, and 0.507
respectively; figure 3(A)). Using an exact test of differences [57] over 150 bootstrapped values of I2C2,
calculated for each metric via resampling over subjects, we find that the I2C2 distribution for Δ̃ is greater
than the I2C2 distribution for DTI-FA, ISO, and MD with 55.3%, 87.3%, and 100% probability,
respectively. The I2C2 distribution for Δ̃ is less than the I2C2 distribution for GFA with 100% probability.

The distribution of ICC across all voxels in the common group mask has a median value of 0.790 for Δ̃,
which is similar to the value of I2C2 for Δ̃ and indicates high reliability (figure 3(B)). For reference, we note
that values of ICC > 0.7 imply high reliability in other imaging studies [54, 58, 59]. Using a two-sided
Wilcoxon signed-rank test, we compare the ICC distribution for Δ̃ with the ICC distributions for GFA
(median 0.857), DTI-FA (median 0.796), ISO (median 0.735), and MD (median 0.454). In all cases
p < 0.001 and the distribution medians are significantly different. Using a two-sided Kolmogorov–Smirnov
test, we compare the shape of the ICC distribution for Δ̃ to the shapes of the ICC distributions for GFA
(KS-statistic D = 0.257), DTI-FA (D = 0.041), ISO (D = 0.285), and MD (D = 0.633). In all cases
p < 0.001 and distribution shapes are significantly different.

Reproducibility. We find that our metric Δ̃ is fairly reproducible according to its distribution of CVWS

across all voxels in the common group mask, with a median value of 0.142 (figure 3(C)). In other imaging
studies, values of CVWS < 0.1 imply high reproducibility [54, 58]. Using a two-sided Wilcoxon signed-rank
test, we compare the CVWS distribution for Δ̃ with CVWS distributions for GFA (median 0.077), DTI-FA
(median 0.100), ISO (median 0.070), and MD (median 0.069). In all cases p < 0.001 and the distribution
medians are significantly different. Using a two-sided Kolmogorov–Smirnov test, we compare the shape of
the CVWS distribution for Δ̃ to the shapes of the CVWS distributions for GFA (KS-statistic D = 0.716),
DTI-FA (D = 0.488), ISO (D = 0.923), and MD (D = 0.776). In all cases p < 0.001 and distribution
shapes are significantly different. Our results indicate that Δ̃, although a reliable differentiator of
individuals, is slightly less reproducible across scans than the other metrics investigated.
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Figure 3. Crystallinity is reliable and reproducible across scans and has high inter-subject variability. (A) Image intra-class
correlation coefficient (I2C2) calculated over the CRASH dataset for four common structural metrics as well as our metric (Δ̃).
Red bars denote I2C2 measured over the full set of subjects, and violin plots show the distribution of I2C2 values obtained via
bootstrapping in which we resample subjects 150 times with replacement and calculate I2C2 over each resample for all metrics.
(B) Histograms of intra-class correlation coefficient ICC(3, 1) (denoted ICC in the panel) over all voxels of the CRASH dataset.
(C) Histograms of the within-subject coefficient of variation, CVWS, over all voxels of the identical dataset. (D) Histograms of the
between-subject coefficient of variation, CVBS, over all voxels of the identical dataset. (E) Histograms of CVBS for only those
voxels with reliable and reasonably reproducible values of each metric, determined by ICC(3, 1) > 0.7 and CVWS < 0.15. (F) Two
views of a map of CVBS for Δ̃ for the voxels shown in panel (E). Voxels are colored by CVBS according to the color bar below the
images. The view on the left shows an axial slice of the image, and the view on the right is the flipside of the view on the left,
showing the exterior of the image.

Individual variability. Crystallinity for a large subset of voxels in the common group mask is more
variable across subjects than the other metrics analyzed, according to distributions of CVBS for all metrics
(figure 3(D)). The median value of CVBS for Δ̃ is 0.274, and that distribution has a prominent tail. Using a
two-sided Wilcoxon signed-rank test, we again compare the CVBS distribution for Δ̃ with CVBS

distributions for GFA (median 0.193), DTI-FA (median 0.203), ISO (median 0.120), and MD (median
0.071). In all cases p < 0.001 and the distribution medians are significantly different. Using a two-sided
Kolmogorov–Smirnov test, we compare the shape of the CVBS distribution for Δ̃ to the shapes of the CVBS

distributions for GFA (KS-statistic D = 0.373), DTI-FA (D = 0.330), ISO (D = 0.853), and MD
(D = 0.931). In all cases p < 0.001 and the distribution shapes are significantly different.

Even within the more restrictive subset of voxels that are somewhat reproducible, with CVWS < 0.15,
and reliable, with ICC(3, 1) > 0.7, the individual variability of Δ̃ measured by CVBS is high in comparison
with the other diffusion metrics (figure 3(E)). For this voxel subset, the median of CVBS for Δ̃ is 0.273, still
with a rather prominent tail. A two-sided Kolmogorov–Smirnov test shows that the shape of this
distribution is significantly different than the shapes of the CVBS distributions for GFA (median 0.204,
KS-statistic D = 0.407), DTI-FA (median 0.219, KS-statistic D = 0.335), ISO (median 0.124, KS-statistic
D = 0.900), and MD (median 0.104, KS-statistic D = 0.909). In all cases p < 0.001. The Wilcoxon
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signed-rank test cannot be performed in this case, because the distributions have differing sizes. A map of
CVBS for Δ̃ over these voxels (figure 3(F)) shows that voxels with reliable, fairly reproducible, and
across-subject variable values of Δ̃ tend to be located on the gray matter and lateral surfaces, rather than the
white matter and medial surfaces. We speculate that the longer multi-voxel length scale over which Δ̃

describes structure, in contrast to the shorter within-voxel length scale over which the other metrics
describe structure, may contribute to the persistence of higher inter-subject variability of Δ̃ with respect to
the other metrics even for this restrictive set of voxels. Indeed, partitioning per-subject crystallinity values of
this restrictive voxel set into two groups of high and low CVBS reveals that the voxels with higher CVBS are
likely to have higher crystallinity (supplementary figure S5). This trend holds true across subjects, indicating
perhaps that crystallinity captures structural information of especially high inter-subject variability. To test
this hypothesis in the future, the reliability, reproducibility, and inter-subject variability of Δ̃ should be
compared to those same features for other metrics that also describe structure on a multi-voxel length scale.

3.3. Crystalline regions of the brain
We now turn to a more thorough investigation of crystallinity throughout the brain, again via analysis of
the scans collected in the CRASH study. We examine the spatial distribution of crystallinity in two ways.
First, we generate a voxel map of crystallinity, averaged over all analyzed subjects and all scans. Second, we
segment each scan into neuroanatomical regions using a common white matter parcellation, and measure
crystallinity throughout each region. In general, we find that crystalline voxels are located towards the
center of the brain, in the corona radiata, internal capsule, corpus callosum, and uncinate fasciculus. Our
findings are consistent with the results reported in section 3.1.

The subject-averaged spatial distribution of crystallinity throughout the brain, in the master template
space discussed in section 3.2, is shown in figure 4(A). Each voxel is colored according to its value of
〈Δ̃〉scan, subj, the average value of Δ̃ over all scans for all subjects. Figure 4(B) contains a thresholded version
of the map in figure 4(A), showing only voxels with the lowest 10% of Δ̃ values. The averaged crystallinity
varies smoothly throughout the brain, and more crystalline regions of the brain are localized in white
matter rather than in grey matter.

To gain more insight into the crystallinity of specific regions of the brain, we utilize a popular white
matter parcellation, the JHU atlas described in the Methods, to group voxels into neuroanatomical regions.
We then calculate distributions of Δ̃ in each white matter region, pooled over all subjects and all scans. In
contrast to the analysis presented previously, we warp the JHU white matter atlas into each subject’s native
space in this analysis, to avoid interpolating vector-valued images into a template space. To perform the
warping, we use the genericlabel interpolation method in ANTs [36]. Figure 4(C) shows distributions of Δ̃
in each white matter region according to the JHU atlas. Supplementary table S1 lists the average value and
standard deviation of Δ̃ within each white matter region.

We highlight regions of especially low Δ̃ (high crystallinity) and high Δ̃ (low crystallinity) with colored
bars. We indicate the locations of these regions in a sample scan in figures 4(D) and (E). Highly crystalline
regions include the internal capsule, splenium and genu of the corpus callosum, corona radiata, and
uncinate fasciculus. These are white matter tracts near the center of the brain with various connective
purposes [2, 26]. Interestingly, several of these tracts were found to be particularly vulnerable to
schizophrenia, bipolar disorder, and autism spectrum disorder [27]. Regions of low crystallinity are located
in the fornix, tapetum, and cerebellar peduncle.

3.4. Parcellation according to crystal grain
Finally, we explore the parcellation of white matter into ‘crystal grains’, or spatially contiguous communities
of voxels that are structurally more similar to each other than expected on average (see Methods). We find
that, despite its anatomy-blind automation, our crystal grain parcellation still results in white matter regions
of anatomical interest. These crystal grains are a novel alternative to existing fiber bundling schemes such as
BUndle ANalytics (BUAN) [60], because they do not divide the brain into known white matter fascicles, but
instead into data-driven parcels of crystalline white matter. Our approach may thus prove useful in future
white matter segmentation studies, perhaps when used in combination with fiber bundling methods.

We first show an example parcellation by crystal grain in figures 5(A) and (B) to demonstrate that
crystal grains are anatomically meaningful by eye and contain useful structural information. We consider
the same Stanford HARDI image as that analyzed in section 3.1, and color crystal grains of size 100 voxels
or greater, detected using the community resolution parameter γ = 1.1 (figure 5(A)). Crystal grains are
roughly symmetric across hemispheres and follow the anatomical branching of large white matter tracts. A
closer look at grains deep within the brain near the corpus callosum (figure 5(B)) shows the hemispheric
symmetry further, as well as the composite structural environments of individual grains.
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Figure 4. Identification of crystalline regions of white matter. (A) Three views of the crystallinity proxy Δ̃ averaged over all
analyzed subjects and all scans of the CRASH dataset, shown in a master template space as described in the main text. Each voxel
is colored by average Δ̃ according to the color bar to the right of the images. Voxels with lower values of Δ̃ are lighter (more
crystalline), and voxels with higher values of Δ̃ are darker (less crystalline). (B) Thresholded views identical to those shown in
panel (A), where only the (most crystalline) voxels with the lowest 10% of Δ̃ values are shown. Voxels are also colored according
to the color bar of panel (A). (C) Crystallinity proxy Δ̃ of voxels in white matter regions according to the JHU white matter atlas
(described in the main text), pooled over all subjects and all sessions. White matter regions are denoted with their formal
anatomical names, and circles show the mean value of Δ̃ in each region, taken across all subjects and all sessions. Error bars show
the standard deviation of Δ̃ within each region, normalized by the square root of the mean number of voxels in each region
(taken across all subjects and all sessions). Regions are organized by increasing mean Δ̃. ((D) and (E)) The most (D) and least
(E) crystalline white matter regions in a sample scan, according to the pooled results over subjects and sessions shown in panel
(C). The most crystalline regions are marked with a light gray bar in panel (C), and the least crystalline regions are marked with a
dark gray bar. Each region is colored according to its average value of Δ̃.

We next compute crystal grains in all scans of the CRASH dataset, and compare pooled results from our
parcellation scheme to the commonly used JHU white matter atlas introduced in the Methods. We perform
crystal grain segmentation over a weighted network for each subject, where weights are defined as in the
Methods and averaged over all sessions of the subject. We vary the community resolution parameter γ for
each subject, and find significant overlap between our crystal grain parcellation and the JHU atlas (warped
into each subject’s native space as detailed in the previous section) over a range of γ for all subjects
(figure 5(C)). Partition overlap is measured via two distinct metrics, the adj. RAND index and adj. MI, both
described in the Methods, to show that trends in overlap with γ are general and do not depend on the
specific overlap measure. Both overlap measures peak between γ = 1.0 and γ = 1.1. Visual inspection of
our crystal grain parcellation of the subject with highest adj. MI with the JHU atlas (at γ = 1.05) confirms
that the segmentation is in fact similar to the JHU atlas (figure 5(D)). We find mesoscale crystal grains that
resemble white matter regions in the JHU atlas, yet are completely determined by automatic detection of
homogeneous brain tissue architecture. We further investigate similarities between this crystal grain
parcellation and the JHU atlas by constructing a one-to-one mapping between each JHU atlas region and its
optimally matched crystal grain. To construct this mapping, we build a confusion matrix C, where Cij is the
number of voxels that make up the intersection between JHU atlas region i and crystal grain j. We then
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Figure 5. Parcellation of white matter into clusters of voxels with similar structure, or ‘crystal grains’. (A) Three views of a
sample diffusion image, colored according to crystal grain. Voxels are colored identically if they are members of the same crystal
grain. Voxels colored black (and smaller in size for ease of visibility) are members of crystal grains of 100 or fewer voxels.
(B) Select crystal grains shown in panel (A), with associated composite diffusion signals. Each composite signal is colored
identically to its associated crystal grain, and connecting lines are drawn when the association is not clear. Composite diffusion
signals are represented via ball-and-stick models for all peak vectors, and peak vectors for all voxels in each crystal grain are
shown simultaneously. (C) Measures of partition similarity between our segmentation according to crystal grain and the
common JHU white matter atlas, computed over scans in the CRASH dataset. adj. MI is shown in gray and adj. RAND score is
shown in black as a function of community resolution parameter γ. Each marker is a measure of partition similarity for one
subject, averaged over its sessions, and lines denote averages across subjects. Similarity is significant over a range of γ values, and
peaks especially around γ ∼ 1.0–1.1. (D) Three views of our crystal grain parcellation of the subject with highest adj. MI with
the JHU atlas, at γ = 1.05. Voxels are colored identically if they are members of the same crystal grain of size >100 voxels. The
top row of images shows the full crystal grain segmentation, while the middle row shows only those voxels in identified white
matter regions according to the JHU atlas. The JHU atlas itself is shown in the bottom row of images for comparison; each white
matter region in the atlas is colored an identical, random color. Similar anatomical structures can be seen in each white matter
parcellation.

perform (cost-maximizing) linear sum assignment using the confusion matrix as the ‘cost’ matrix, to find
the optimally matched crystal grain for each JHU atlas region such that the total number of overlapping
voxels between all pairs is maximized [61, 62]. To perform this optimization, we use the linear sum
assignment algorithm implemented in the Python package scipy [63]. Note that, since there are more crystal
grains than JHU atlas regions, many crystal grains are not matched to any JHU atlas region using this
method. Our matching results are tabulated in supplementary table S2 and detailed in supplementary figure
S6, showcasing the similarities between the parcellations. In sum, our results underscore the potential for
incorporating crystallinity into future white matter parcellation strategies.

3.5. Diffusion signal shape characterization
While crystallinity provides important information regarding the homogeneity of diffusion signals within a
local region of voxels, characterization of the diffusion signal shape itself within each voxel is also of interest
within the neuroimaging community. For this purpose, tools from soft matter may also be useful; we briefly
explore one such structural characterization tool here. We use sets of orientational order
parameters—usually denoted by Ql in soft matter literature and used to describe symmetries of particle
clusters [29]—to describe the shape of each diffusion signal in each voxel, and show that these Ql shape
descriptors provide an easily calculable, succinct means of determining whether the diffusion signal shape is
especially unidirectional (representing a coherent white matter fiber bundle), bidirectional (representing a
fiber crossing), or noisy. Each diffusion signal shape can be described with a shape descriptor consisting of
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Figure 6. Orientational order parameters characterize diffusion signal shape. (A) Three fiber ODFs with different shapes are
shown in black at the center of their corresponding probability density distributions on the unit sphere. Higher probability
density is colored green, and lower probability density is colored pink. Above or below each ODF, corresponding values of
orientational order parameters Q2 (circles), Q4 (triangles), and Q6 (squares) are shown. (B) A slice of an example HARDI image,
with voxels colored according to orientational order parameters Q2, Q4, and Q6. For each voxel, (Q6, Q4, Q2) is converted to an
(R, G, B) color according to min(Ql, 1). (C) Three views of a full sample image, with voxels colored according to orientational
parameters (Q6, Q4, Q2) = (R, G, B). Each Ql parameter is converted to the appropriate color channel according to
min(Ql, 1.25). Voxels that appear cyan are those for whom Q2 > 1.25 and Q4 > 1.25, resulting in equal mixing of the blue and
green channels. (D) Histograms of Ql for all voxels of this sample scan for l = 2 (blue vertical cross-hatch), l = 4 (green diagonal
cross-hatch), and l = 6 (red dots). (E) Joint histograms of Q2 (left) and Q4 (right) against MD (top) and GFA (bottom)
accumulated over all voxels of this sample scan.

three orientational order parameters (Q2, Q4, Q6); this description acts as a fingerprint (of only three
dimensions) for the shape of the signal that is quite distinct from other diffusion metrics like MD and GFA.
Calculation of the Ql parameters is described in the Methods.

To show that the set (Q2, Q4, Q6) differentiates between various diffusion signal shapes, we show three
examples of fiber ODFs (unidirectional, crossing, and noisy), their corresponding probability density
distributions on the unit sphere, and values of orientational order parameters Q2, Q4, and Q6 for each of
them (figure 6(A)). The especially unidirectional ODF’s value of Q2 is significantly higher than the other
order parameters; the crossing ODF’s value of Q4 is significantly higher than the other order parameters;
and the noisier ODF’s value of Q6 is highest, although absolute values for all parameters are different across
ODFs. Viewing the parameters (Q2, Q4, Q6) together thus communicates significant rotationally-invariant
information regarding fascicles, crossings, and general noise.

We demonstrate the ability of the parameters (Q2, Q4, Q6) to distinguish between fascicles, crossings,
and noise in a real dataset by visualizing them in the example Stanford HARDI image discussed previously
(figures 6(B)(C)). We visualize (Q2, Q4, Q6) simultaneously as blue, green, and red channels respectively
when coloring each voxel. Voxels with ODFs that are mostly uniaxial are mostly blue in color, as their values
of Q2 are highest. Voxels with ODFs that indicate fiber crossings and therefore are biaxial are more green, as
they contain higher values of Q4. Darker voxels contain noisier ODFs, as all values of Ql are lower in
magnitude. Although Q6 is generally higher in these noisier voxels, they are not significantly red in color,
because all Ql values in these voxels are low. In both the diffusion imaging slice in figure 6(B) and the three
views of the whole scan shown in figure 6(C) (each identical to the views shown in figures 1(A) and 2(A)
respectively), the corpus callosum and corona radiata emerge as regions of a more blue or cyan color,
indicating highly structured white matter fascicles, and more green regions of crossing fibers can also be
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seen at the juncture between large white matter tracts, particularly in the transverse section. Cumulative
distributions of each Ql parameter over the entire scan show the wider range of Q2 with respect to the other
parameters, and the wider range of Q4 with respect to Q6 (figure 6(D)).

We also show that the orientational order parameters Ql contain novel information concerning each
diffusion ODF, by directly comparing values of Q2 and Q4 of each voxel against corresponding values of
MD and GFA (figure 6(E)). We find that the orientational Ql parameters are weakly correlated with MD
(Pearson correlation coefficients ρ = −0.14 and ρ = −0.15 for Q2 and Q4, respectively), and are more
correlated with GFA (Pearson correlation coefficients ρ = 0.64 and ρ = 0.63 for Q2 and Q4, respectively),
with the general trend that voxels of lower GFA tend to have lower values of Q2 or Q4. As GFA increases,
however, voxels have wider ranges of both Q2 and Q4, illustrating the decoupling of orientational diffusion
shape information from anisotropy. In part, this decoupling at high values of GFA is attributable to the fact
that the Ql parameters are, by design, directly dependent on ODF signal strength, while GFA is not. We
explore this key difference in normalization and its implications for the decoupling of these parameters at
high GFA in supplementary figure S7.

4. Discussion

We have demonstrated that structural characterization techniques popular in soft matter physics are also
useful in the context of neuroimaging. Crystallinity, or diffusion signal homogeneity, is a promising marker
of white matter microstructure. It provides white matter information that is distinct from that provided by
other traditional diffusion metrics; it is reliable, reproducible, and variable across individuals; and it varies
meaningfully throughout the brain, with large white matter bundles possessing more structural
homogeneity than smaller white matter bundles or grey matter. Segmentation of white matter into crystal
grains, or especially structurally similar regions, constitutes a parcellation informed by underlying brain
tissue architecture that overlaps significantly with a commonly used white matter atlas. Finally, orientational
order parameters from soft matter provide low-dimensional descriptors of diffusion signal shape, and
readily pinpoint regions of white matter structures and fiber crossings. The following sections provide
context for our work within the separate disciplines of neuroimaging and soft matter, consider the
limitations of our methods, and outline possible future directions and extensions.

4.1. Prior methods to assess white matter microstructure
A major obstacle for dMRI is its high dimensionality. Most popular neuroimaging methods reduce this
dimensionality by representing white matter structure with scalar values for each voxel that can be used in
voxel-wise group analyses with standard statistical tools. Measures like (G)FA and MD represent structure
within voxels, but omit information about ODF directionality and dispersion. Additionally, these values are
difficult to interpret in biological terms [64]. Alternatively, fixel-based analyses [65] compare scalar values
on each ODF lobe, providing greater specificity than voxel-based approaches. Fixels, however, do not
consider the orientation of fixels relative to one another or across voxels. The integrity of larger white
matter structures that exist across voxels is typically assessed through inter-voxel measures of coherence
such as the lattice index [23], tensor overlap [24], or local diffusion homogeneity [17]. The first two metrics
rely on simplified tensor models for diffusion that are not necessarily faithful representations of white
matter structures, while the latter metric, although model-free, requires substantial diffusion data for its
computation. Tractography can also be used to characterize larger white matter structures; in this method,
analysis tends to focus on region-to-region connectivity instead of local multi-voxel volumes of white
matter [66, 67]. The approach developed in this paper is distinct from all of these techniques, as it
incorporates magnitude and direction across voxels to characterize structure in a manner that is model-free,
simple to compute, and intuitively grounded in materials physics.

4.2. Common tools for structural characterization in soft matter
The methods to assess white matter microstructure that we have presented in this paper, namely local
crystallinity and orientational order parameterized by Ql, are only two of the many techniques developed
over the past several decades for structural characterization within soft matter physics [68, 69]. Some of
these techniques may also translate well to the description of brain structure, and we briefly review them
here. Relevant methods use local signatures ranging from Voronoi cells [70, 71], to bond angles [72] or the
topology of local bonding environments [73–75], to the Fourier coefficients of local bonding environments
[29, 76–78] to identify local structure in particulate systems. Recent advancements have also been made in
using machine learning to identify structures robustly and automatically [77–79]. A final method of note is
polyhedral template matching [80], which (like crystallinity) relies on root-mean-squared deviations
between local environments in real space to determine structure. Although this method and many of those
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just described were developed to identify specific structures through comparison to candidate templates,
they may be straight-forwardly modified to simply describe rather than identify structure in the context of
the human brain.

4.3. Prior efforts to develop white matter parcellations
Parcellation, or the division of the brain into meaningful regions, is a critical step in understanding and
summarizing the anatomical and functional characteristics of brain tissue. A majority of efforts in this vein
have focused on developing parcellations for grey matter [81]. Although less common, parcellations have
also been developed for subcortical white matter, which have proven particularly useful for distinguishing
neuroanatomical structures and providing regions of interest for cross-subject comparisons [82]. Efforts to
segment white matter typically fall into one of two categories: they might be informed by cortical
connectivity, or else consist of fiber tracking and bundling in white matter alone [83]. It has been
demonstrated recently that the latter method of fiber clustering results in more consistent white matter
segmentation across subjects [84]. Our partition of voxels into ‘crystal grains’ is particularly relevant for
fiber clustering, and can be regarded as an additional tool (among others) to be leveraged for this purpose.
Other methods developed for fiber clustering include segmentation according to geodesic distance between
diffusion tensors [85], a tensor dissimilarity metric grounded in information theory [86], Euclidean
difference between diffusion tensors [87], and the tensor scalar product [88]; level set modeling [89]; graph
cut optimization [90]; spectral segmentation [91]; combined tensor clustering and probabilistic
connectivity mapping [92]; fuzzy, non-parametric segmentation [93]; and even segmentation by projection
into a higher-dimensional space [94]. Our classification of voxels into crystal grains provides a physically
intuitive, simple, structure-driven metric that might be used in addition to or in concert with any of these
more complicated methods for a more accurate segmentation of white matter. Relatedly, these methods
might be useful for corroboration of our white matter parcellation scheme or vice versa.

4.4. Methodological considerations and limitations
Our method of crystallinity characterization is limited in several ways, and may be improved in the future.
First, we only use the peaks of each ODF signal to characterize the local white matter environment.
Although this focus has the advantage of reducing the dimensionality needed to describe each ODF signal,
it obviously results in a loss of signal information. Future efforts to determine structural homogeneity could
rely on other shape matching methods that incorporate more information about each signal shape.
Additionally, we compared structural environments using a greedy method to minimize their
root-mean-squared deviation. This method, while fast and straight-forward, is not guaranteed to find the
globally minimal deviation between the environments. Finding the global minimum amounts to solving the
well-known assignment problem [95], and in the future we could replace our greedy algorithm with any of
the algorithmic solutions to the assignment problem to compare structural environments and determine
crystallinity. Finally, we note that we have characterized the crystallinity of each voxel via a metric that is
normalized with respect to the signal strength of that voxel. We included this normalization to treat noisy
signals of low strength on equal footing with clear signals of high strength, but a better normalization
scheme in the future could be developed to actively weight noisy signals such that they are explicitly
classified as disordered.

We also note that there is a difference in how ‘crystallinity’ is interpreted in the contexts of diffusion
MRI and soft matter. The word implies organization at an atomic or molecular scale in materials science,
but in human MRI our crystallinity measurement reflects coherent structures spanning cubic millimeters of
space. It is critical to note that accurately measuring the homogeneity of water diffusion on a smaller,
within-voxel scale would require a recently-developed diffusion imaging sequence known as q-space
trajectory imaging (QTI) [96]. It would be interesting in the future to extend our analysis to sub-voxel
tissue structures captured via QTI [97], to probe ‘crystallinity’ on a length scale approaching that of
microns. Currently, however, since our method only uses ODF peaks and not lobe widths, it can be used in
conjunction with standard linear diffusion encoding sequences that have been available on most MRI
scanners for many years. The method is also applicable to data collected with recent technological advances
in image formation that prioritize improvements in image fidelity, acceleration of acquisition, and increase
in the signal-to-noise ratio [98, 99].

4.5. Future directions
A study in the immediate future will use the orientational order parameters Ql introduced in this work to
characterize white matter fiber crossings and streamlines in real datasets such as the CRASH dataset, to
ascertain the robustness and reliability of this characterization method, and to investigate differences in
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these parameters across individuals. We will also explore using the rotational invariance of these parameters
for the purposes of brain registration and image correction.

We also look forward to using local crystallinity to investigate individual differences in brain structure
that may occur as a result of sex, genetics, or physiology. Future studies will explore how structural
homogeneity changes in white matter during development and aging [100–103], or over training
[104–107], and if it varies with gene expression in distributed regions throughout the brain [108].
Moreover, our approach may prove useful in understanding the structural alterations that accompany
various neurological and psychiatric disorders [109, 110], as evident either in vivo or post mortem
[111–113] and in either large or small population-based studies [114]. For each dimension of variance, we
will target questions such as: do associated statistics involving overall crystallinity change, or are shifts
localized to certain regions? Which regions become more or less crystalline? Does crystallinity correlate with
any other biomarkers gleaned from pertinent datasets? Additional tools from the soft matter community
may also be leveraged to characterize local white matter structure in more detail, including automated
structure classification via machine learning. These investigations will contribute to the growing body of
knowledge regarding how white matter structure influences brain function.

5. Conclusion

Materials physics provides advanced approaches for describing the characteristics of soft matter, but these
tools have not yet been used to understand the complex structure of human brain tissue. This study
provides an initial step in that interdisciplinary direction. We have analyzed white matter microstructure in
the human brain by calculating crystallinity, or diffusion signal homogeneity, and orientational order
parameters that describe the shape of each diffusion signal. We found that crystallinity provides
information distinct from that provided by other common diffusion metrics, has high test-retest reliability,
and varies meaningfully across the brain along interpretable lines of anatomical difference. Parcellations of
white matter into crystal grains, or regions with high structural similarity, are automated, informed by
brain architecture, and have significant overlap with a common white matter atlas. Additionally, sets of
orientational order parameters provide fingerprints of reduced dimensionality for each diffusion signal that
are capable of locating regions of white matter fiber crossings and streamlines. Our study underscores the
utility of expanding communication between the fields of soft matter physics and neuroimaging in ongoing
efforts to understand the material properties of human brain tissue and its relevance for cognitive function.

6. Citation diversity statement

Recent work in several fields of science has identified a bias in citation practices such that papers from
women and other minorities are under-cited relative to other papers in the field [115–121]. Here we sought
to proactively consider choosing references that reflect the diversity of our field in thought, form of
contribution, gender, and other factors. We obtained the predicted gender of the first and last author of
each reference by using databases that store the probability of a first name being carried by a woman or a
man [115, 122]. By this measure (and excluding self-citations to the first and last authors of our current
paper, and papers whose authors’ first names could not be determined), our references contain 12.04%
woman(first)/woman(last), 19.44% man/woman, 13.89% woman/man, and 54.63% man/man
categorization. This method is limited in that (a) names, pronouns, and social media profiles used to
construct the databases may not, in every case, be indicative of gender identity and (b) it cannot account for
intersex, non-binary, or transgender people. We look forward to future work that could help us to better
understand how to support equitable practices in science.
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[61] Meiľa M and Heckerman D 2001 Mach. Learn. 42 9
[62] Hart C E, Sharenbroich L, Bornstein B J, Trout D, King B, Mjolsness E and Wold B J 2005 Nucleic Acids Res. 33 2580
[63] Virtanen P et al 2020 Nat. Methods 17 261
[64] Jones D K, Knösche T R and Turner R 2013 NeuroImage 73 239
[65] Raffelt D A, Tournier J-D, Smith R E, Vaughan D N, Jackson G, Ridgway G R and Connelly A 2017 NeuroImage 144 58
[66] Jbabdi S and Johansen-Berg H 2011 Brain Connect. 1 169
[67] Ciccarelli O, Catani M, Johansen-Berg H, Clark C and Thompson A 2008 Lancet Neurol. 7 715
[68] Keys A S, Iacovella C R and Glotzer S C 2011 J. Comput. Phys. 230 6438
[69] Stukowski A 2012 Modell. Simul. Mater. Sci. Eng. 20 045021
[70] Finney J L 1970 Proc. R. Soc. A 319 479
[71] Tanemura M, Hiwatari Y, Matsuda H, Ogawa T, Ogita N and Ueda A 1977 Prog. Theor. Phys. 58 1079
[72] Ackland G J and Jones A P 2006 Phys. Rev. B 73 054104
[73] Honeycutt J D and Andersen H C 1987 J. Phys. Chem. 91 4950
[74] Malins A, Williams S R, Eggers J and Royall C P 2013 J. Chem. Phys. 139 234506
[75] Lazar E A, Han J and Srolovitz D J 2015 Proc. Natl Acad. Sci. 112 E5769
[76] Auer S and Frenkel D 2004 J. Chem. Phys. 120 3015
[77] Phillips C L and Voth G A 2013 Soft Matter 9 8552
[78] Spellings M and Glotzer S C 2018 AIChE J. 64 2198
[79] Reinhart W F, Long A W, Howard M P, Ferguson A L and Panagiotopoulos A Z 2017 Soft Matter 13 4733
[80] Larsen P M, Schmidt S and Schiøtz J 2016 Modell. Simul. Mater. Sci. Eng. 24 055007
[81] Glasser M F et al 2016 Nature 536 171
[82] Smith S M, Kindlmann G and Jbabdi S 2013 Diffusion MRI (From Quantitative Measurement to in Vivo Neuroanatomy) 2nd edn

(Amsterdam: Elsevier) pp 209–39
[83] O’Donnell L J, Golby A J and Westin C-F 2013 NeuroImage 80 283
[84] Zhang F, Norton I, Cai W, Song Y, Wells W M and O’Donnell L J 2017 Proc. Int. Symp. Biomedical Imaging p 796
[85] Lenglet C, Rousson M and Deriche R 2006 2006 3rd IEEE Int. Symp. Biomedical Imaging: Macro to Nano vol 1 (IEEE) pp 794–7
[86] Wang Z and Vemuri B C 2005 IEEE Trans. Med. Imag. 24 1267
[87] Wang Z and Vemuri B C 2004 Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics) vol 3024 pp 304–15
[88] Jonasson L, Bresson X, Hagmann P, Cuisenaire O, Meuli R and Thiran J-P 2005 Med. Imag. Anal. 9 223
[89] Zhukov L 2003 J. Electron. Imag. 12 125
[90] Weldeselassie Y T and Hamarneh G 2007 DT-MRI segmentation using graph cuts Medical Imaging 2007: Image Processing (San

Diego, United States of America, 2007) ed J P W Pluim and J M Reinhardt p 65121K
[91] Ziyan U, Tuch D and Westin C-F 2006 Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics) vol 4191 LNCS pp 807–14
[92] Barbieri S, Bauer M H A, Klein J, Moltz J, Nimsky C and Hahn H K 2012 NeuroImage 60 1025
[93] Awate S P and Gee J C 2007 Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics) vol 4584 LNCS pp 296–307
[94] Jonasson L, Bresson X, Thiran J-P, Wedeen V J and Hagmann P 2007 IEEE Trans. Med. Imag. 26 1547
[95] Aardal K, Nemhauser G L and Weismantel R (ed) 2005 Discrete Optimization (Handbooks in Operations Research and

Management Science) vol 12 (Amsterdam: Elsevier)
[96] Westin C-F et al 2016 NeuroImage 135 345
[97] Magdoom K N, Pajevic S, Dario G and Basser P J 2021 Sci. Rep. 11 2766
[98] Wu W and Miller K L 2017 J. Magn. Reson. Imag. 46 646
[99] Wu W, Koopmans P J, Andersson J L R and Miller K L 2019 Magn. Reson. Med. 82 107

[100] Sexton C E, Walhovd K B, Storsve A B, Tamnes C K, Westlye L T, Johansen-Berg H and Fjell A M 2014 J. Neurosci. 34 15425
[101] Krogsrud S K et al 2016 NeuroImage 124 473
[102] Giorgio A, Santelli L, Tomassini V, Bosnell R, Smith S, De Stefano N and Johansen-Berg H 2010 NeuroImage 51 943
[103] Giorgio A, Watkins K E, Douaud G, James A C, James S, De Stefano N, Matthews P M, Smith S M and Johansen-Berg H 2008

NeuroImage 39 52
[104] Scholz J, Klein M C, Behrens T E J and Johansen-Berg H 2009 Nat. Neurosci. 12 1370
[105] Sampaio-Baptista C et al 2013 J. Neurosci. 33 19499
[106] Sexton C E et al 2020 Physiol. Behav. 223 112923

19



New J. Phys. 23 (2021) 073047 E G Teich et al

[107] Tomassini V, Jbabdi S, Kincses Z T, Bosnell R, Douaud G, Pozzilli C, Matthews P M and Johansen-Berg H 2011 Hum. Brain
Mapp. 32 494

[108] Sampaio-Baptista C et al 2020 Prog. Neurobiol. 187 101770
[109] McKavanagh R et al 2019 Hum. Brain Mapp. 40 4417
[110] Kolind S, Matthews L, Johansen-Berg H, Leite M I, Williams S C R, Deoni S and Palace J 2012 NeuroImage 60 263
[111] Miller K L et al 2011 NeuroImage 57 167
[112] Roebroeck A, Miller K L and Aggarwal M 2019 NMR Biomed. 32 e3941
[113] Miller K L, McNab J A, Jbabdi S and Douaud G 2012 NeuroImage 59 2284
[114] Miller K L et al 2016 Nat. Neurosci. 19 1523
[115] Dworkin J D, Linn K A, Teich E G, Zurn P, Shinohara R T and Bassett D S 2020 Nat. Neurosci. 23 918–26
[116] Maliniak D, Powers R and Walter B F 2013 Int. Org. 67 889
[117] Caplar N, Tacchella S and Birrer S 2017 Nat. Astron. 1 0141
[118] Chakravartty P, Kuo R, Grubbs V and McIlwain C 2018 J. Commun. 68 254
[119] Thiem Y, Sealey K F, Ferrer A E, Trott A M and Kennison R 2018 Just Ideas? The Status and Future of Publication Ethics in

Philosophy: A White Paper https://publication-ethics.org/
[120] Dion M L, Sumner J L and Mitchell S M 2018 Polit. Anal. 26 312
[121] Bertolero M A et al 2020 Racial and ethnic imbalance in neuroscience reference lists and intersections with gender bioRxiv

Preprint https://doi.org/10.1101/2020.10.12.336230 (accessed 21 November 2020)
[122] Zhou D, Cornblath E J, Stiso J, Teich E G, Dworkin J D, Blevins A S and Bassett D S 2020 Gender diversity statement and code

notebook (v1.0) Zenodo https://doi.org/10.5281/zenodo.3672110

20


