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Abstract

Precise measurement of physiological signals is criti-

cal for the effective monitoring of human vital signs. Re-

cent developments in computer vision have demonstrated

that signals such as pulse rate and respiration rate can

be extracted from digital video of humans, increasing the

possibility of contact-less monitoring. This paper presents

a novel approach to obtaining physiological signals and

classifying stress states from thermal video. The proposed

network–”StressNet”–features a hybrid emission represen-

tation model that models the direct emission and absorp-

tion of heat by the skin and underlying blood vessels. This

results in an information-rich feature representation of the

face, which is used by spatio-temporal network for recon-

structing the ISTI ( Initial Systolic Time Interval : a measure

of change in cardiac sympathetic activity that is considered

to be a quantitative index of stress in humans). The recon-

structed ISTI signal is fed into a stress-detection model to

detect and classify the individual’s stress state (i.e. stress or

no stress). A detailed evaluation demonstrates that Stress-

Net achieves estimated the ISTI signal with 95% accuracy

and detect stress with average precision of 0.842.

Keywords: Stress Detection, rPPG, ISTI signal, phys-

iological signal measurement, ECG, ICG, Deep learning

model

1. Introduction

As the world has come to a standstill due to a deadly pan-

demic [33], the need for non-contact, non-invasive health

monitoring systems has become imperative. Remote photo-

plethysmography (rPPG) provides a way to measure physi-

ological signals remotely without attaching sensors, requir-

ing only video recorded with a high-resolution camera to

measure the physiological signals of human health. Much

of the recent research in the area of rPPG [50] has fo-

Figure 1. Example of ECG and ∂Z/∂t waveforms computed

from the present data. ∂Z/∂t represents the change in impedance

recorded by ICG (Z) signal with time. After each ECG peak

value there exists an ∂Z/∂t peak value. The time difference be-

tween these two values is known as the initial systolic time interval

(ISTI).

cussed on leveraging modern computer vision based sys-

tems [8, 54, 25, 5] to monitor human vitals such as heart

rate and breathing rate. More recent work has expanded

these methods to detecting more complex human physi-

ological signals and using them to classify stress states

[54, 25, 5].

Whereas all recent datasets for rPPG only collect electro-

cardiogram (ECG) as the cardiovascular ground truth sig-

nal, here we recorded both ECG and impedance cardiog-

raphy (ICG). ICG is a noninvasive technology measuring

total electrical conductivity of the thorax. It is the measure

of change in impedance due to blood flow. With these two

signals, we have the ability to estimate more accurate quan-

tifiers of cardiac sympathetic activity [38]. Two common

metrics are pre-ejection time (PEP) and initial systolic time
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Figure 2. Model Architecture. Green boxes are the different modules of the model. Yellow boxes are the variables throughout the model.

The Emission model processes the raw input data which is then fed into spatial and temporal modules. The Detector network predicts ISTI

value for each of the frames from the output of these modules. This ISTI signal is used as input in our stress detection network.

interval (ISTI).

PEP is the strongest cue for cardiac sympathetic activity.

It is defined as the interval from the onset of left ventricular

depolarization, reflected by the Q-wave onset in the ECG,

to the opening of the aortic valve, reflected by the B-point

in the ∂Z/∂t (derivative of ICG or Z) signal [32, 52] as can

be seen in Figure 1. Unfortunately, measuring PEP from

ECG and ∂Z/∂t signals is quite difficult as the Q and B

points that define PEP are subtle and very difficult to pin-

point [37, 46]. Accuracy of methods to estimate PEP are

low and precision differs highly among studies [24, 37]. In-

stead, ISTI can be used as a reliable index of cardiac sympa-

thetic activity [38]. ISTI is a straightforward calculation de-

fined as the time difference between the consecutive peaks

of ECG and ∂Z/∂t. ISTI is considered a strong index of

myocardial contractility [46, 26] and numerous efforts have

shown that ISTI can be used to analyze different physiolog-

ical phenomena e.g. stress, blood pressure [26, 51, 47, 26].

Here we introduce StressNet, a non-contact based ap-

proach to estimating ISTI. To the best of our knowledge

this approach is the first of it’s kind. StressNet leverages

the ISTI signal to classify whether a person is experienc-

ing stress or not. To estimate the ISTI signal, a spatial-

temporal deep neural network has been developed along

with an emission representation model. Other physiological

signals like heart rate (HR) or heart rate variability (HRV)

cannot measure the changes in contractility, which are influ-

enced by sympathetic, but not by parasympathetic activity,

in humans [28].

Recently a number of studies have applied deep learning

methods to the detection of HR or HRV from face videos

[54, 8, 19, 29]. Most of these methods either fail to correctly

identify the peak information in ECG or do not properly ex-

ploit the temporal relations in the face videos [54]. Recent

work by [54] has developed a spatial-temporal deep net-

work to measure rPPG signals such as heart rate variability

(HRV) and average heart rate (AHR). Although these mea-

surements are important, we show that in our experimental

setup, the ground-truth ISTI signals allow for more accurate

classification of stress state than AHR or HRV.

In addition, thermal images mitigate some privacy con-

cerns because the true likeness of the face is not being stored

unlike RGB based models [15].

StressNet is an end-to-end spatial-temporal network that

estimates ISTI signal and attempts to classify stress states

based on thermal video recordings of the human face. An

extensive analysis of the detailed dataset developed for this

work has shown correlation between the estimated signal

and ground truth. The effectiveness of this predicted ISTI

signal is further validated by the model’s ability to accu-

rately classify an individual’s stress state.

Technical Contributions:

• An emission representation module is proposed that

can be applied to infrared videos to model variations

in emitted radiation due to motion of blood and head

movements.

• A spatial temporal deep neural network is developed

to estimate ISTI.

• A simple classifier is then trained to estimate the stress

level from the computed ISTI signal. To the best of our

knowledge this is the first attempt to directly estimate

ISTI and stress from thermal video.

2. Related Works

ISTI has been proposed as an effective, quantitative mea-

sure of psychological and physiological stress [21, 31, 12,
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18, 6]. Measurement of ISTI requires both the ECG and

∂Z/∂t signals. Heart rate variability has also been used

in several studies to index psychological and physiological

stress [54, 8, 19, 29]. Different camera modalities have also

been used, namely, infrared, visible RGB, and five-channel

multi-spectral [3, 8, 54, 5, 53]. A distinction is also made

between research that takes place under laboratory and real-

world settings. In the latter, environmental variables can

complicate the detection and/or estimation task.

While no other works have included ISTI estimation or

the ICG signal in their frameworks, the common video and

ECG inputs lend themselves to similar network designs.

Several works for estimation of heart rate rely solely

upon registration and classical signal processing techniques.

For example, work from [23] registered a region of interest

on the face, took the mean of the green channel, and passed

that signal through a bandpass filter to estimate the heart-

beat signal. At its time of publication in 2014, it achieved

state-of-the-art performance on the MAHNOB-HCI dataset

with a mean-squared error of 7.62 bpm [23].

Several studies have investigated heart rate variability es-

timation, using a variety of sensor types [25, 5, 27, 4].

The first end-to-end trainable neural network for rPPG

was DeepPhys [8]. It replaced the classical face detection

methods with a deep learning attention mechanism. Tempo-

ral frame differences are fed to the model, in addition to the

current frame, to allow the network to learn motion com-

pensation.

A more recent model built on DeepPhys is PhysNet [54].

This work incorporated a recurrent neural network (RNN),

specifically long short term memory (LSTM) over the tem-

poral domain. For tasks such as heart rate detection and

pulse detection, modest gains were observed over Deep-

Phys. The addition of the LSTM also allowed the network

to be trained on the task of atrial fibrillation detection.

3. Approach

Using raw thermal videos, our emission representation

model generates the input for the spatial-temporal network.

This network, along with the detection network predicts the

ISTI signal from the raw input thermal videos. Our pro-

posed model architecture is shown in Figure 2.

3.1. Generating ISTI signal

Electrocardiography (ECG) and Impedance cardiogra-

phy’s (ICG or Z) derivative (∂Z/∂t) act as the gold-

standard physiological signals. ISTI is defined as the in-

terval from the onset of left ventricular depolarization, re-

flected by the Q-wave onset in the ECG, to the peak blood

flow volume through aortic valve, reflected by the Z-point

in the ∂Z/∂t signal. This time interval is computed from

each peak of ECG and corresponding ∂Z/∂t peak. The dis-

crete time interval value of ISTI is plotted at corresponding

Figure 3. Discrete ISTI values are plotted against the peak po-

sitions of the ECG signal for a single participant. The ”Base”,

”Prep”, ”Immersion” and ”Recovery” labels refer to different

phases of our stress induction protocol, whereby participants im-

merse their feet in either ice-water (”stress” condition) or luke-

warm water (”no-stress” condition). The data shown were ran-

domly selected from the ”no-stress” condition. See section 4.1

for a detailed description of the protocol.

ECG peak positions as shown in Figure 3 and then interpo-

lated with cubic interpolation to form a continuous signal.

In Figure 3, the x-axis represents time (ms) while y-axis val-

ues represent the ISTI value (ms) for a particular ECG peak

at that time of the video. The interpolated continuous ISTI

signal is used as the ground truth for ISTI prediction.

3.2. Emission Representation Model

According to [50], RGB video based physiological sig-

nal measurement involves modeling the reflection of exter-

nal light by skin tissue and blood vessels underneath. How-

ever, in the case of thermal videos, the radiation received

by the camera involves direct emissions from skin tissue

and blood vessels, absorption of radiation from surrounding

objects, and absorption of radiation by atmosphere [35, 1].

Here, we build our learning model based on Shafer’s dichro-

matic reflection model (DRM) [50] as it provides a basic

idea to structure our problem of modeling emissions and ab-

sorption. We can define the radiation received by the cam-

era at each pixel location (x, y) in the image as a function

of time:

W
x,y(t) = Ex,y

ems(t) + Ex,y
abs(t) + Ex,y

atm(t) (1)

where W(t) is an energy vector (we drop the (x, y) pixel lo-

cation index in the following for simplicity.) Eems(t) is the

total emissions from skin tissue and blood vessels; Eabs(t)
is absorption of radiations by skin tissue and blood vessels;

Eatm(t) is the absorption of radiation by atmosphere. In
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current experimental setup the person is in a closed envi-

ronment and 3ft from thermal camera, therefore the atmo-

spheric absorption is negligible. According to [16], human

skin behaves as a black-body radiator, therefore the reflec-

tions are close to zero and emission is almost equivalent to

absorption.

This implies that the only variation in energy comes from

the head motion and from blood flow underneath skin. If

we decompose the Eems(t) and Eabs(t) into stationary and

time-dependent components:

Eems(t) = Eo . (ǫs + ǫb . f1(m(t), p(t)) (2)

where Eo is the energy emitted by a black body at con-

stant temperature, it is modulated by two components: ǫs,

is the emissivity of skin and ǫb, is the emissivity of blood.

f1(m(t), p(t)) represents the variations observed by ther-

mal camera; [8, 50] m(t) denotes all non-physiological

variations like head rotations and facial expressions; p(t)
is the blood volume pulse (BVP). In a perfect black body,

emissivity is equal to absorbtivity, therefore the absorbed

energy is:

Eabs(t) = Eab(t) . (ǫs + ǫb . p(t)) (3)

where Eab is the energy absorbed that changes with sur-

rounding objects and their positions with respect to skin tis-

sue.

Eab(t) = Eo . (1 + f2(m(t), p(t))) (4)

where f2(m(t), p(t)) represents the variation observed by

the skin tissue. After substituting (4), (3), (2) in equation

(1) and fusing constants; then neglecting the product of f1
and f2 as it is generally complex non-linear functions. Ne-

glecting product of varying terms, we get an approximate

W(t) as :

W(t) ≈ K + Eo . ǫb . (p(t) + f1(m(t), p(t)))

+Eo . ǫs . f2(m(t) , p(t))
(5)

where K is 2Eo .ǫs. We can get rid of this constant by taking

first order derivative in the temporal domain.

W
′(t) = p′(t) . Eo . (ǫb + ǫb .

∂f1
∂p

+ ǫs .
∂f2
∂p

)

+m′(t) . Eo . (ǫb .
∂f1
∂m

+ ǫs .
∂f2
∂m

)

(6)

This representation encompasses all the factors contribut-

ing to variations in radiation due to blood and face motion

captured by the camera. Thus, we can suppress all possible

non-necessary elements from data recorded by the camera.

We use log non-linearity on each pixel to suppress any out-

lier in each image and separate the Eo, as its spatial distri-

bution does not contribute to the physiological signal. The

non-linearity looks as follows.

X(t) = sign(W′(t)) . log(1 + mod W
′(t)) (7)

Figure 4. Stress detection network. Estimated ISTI signal is di-

rectly fed into the classifier network to predict the probability that

the subject is under stress.

To remove high frequency components, we do a Gaussian

filtering with σ = 3 in the spatial domains, and σ = 4 in

the temporal domain. This filtered X(t) is the input to our

deep learning model.

3.3. Deep Learning Model

Spatial-Temporal Network: Spatial-Temporal net-

works are highly successful in action detection and recogni-

tion tasks [45, 44, 49]. More recently, such networks have

been used to process multispectral signals [55, 43, 22] The

input to our spatial-temporal network is the stacked features

from the emission representation model, which are then fed

to a backbone network (e.g. resnet-50 [17]). This backbone

network serves as a feature extractor. We mainly tested with

object detection networks without the classification blocks

as backbone networks.

Weights of these backbone networks are initialized with

ImageNet pretrained values so that they can converge

quickly on thermal videos. Global average pooling oper-

ation follows by the backbone block.

f0 = GAP (B (X(t)) (8)

where B( . ) stands for the backbone network, GAP is

global average pooling operation, X(t) is from equation[ 7]

(all processed frames stacked horizontally) and fo is the out-

put feature vector.

The backbone network is followed by long short term

memory (LSTM) [42, 14] network, which captures the tem-

poral contextual connection information from the extracted

spatial features. LSTM [36] units include a ’memory cell’

that capture long range temporal context. A set of gates is

used to control the flow of information which in turn helps

the LSTM network learn temporal relations among the input

features. The extracted feature vector from the backbone

network is fed to the LSTM network.

lo = LSTM (f0) (9)
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where lo is the feature output from LSTM network,

LSTM ( . ) stands for LSTM network and f0 is the extracted

feature vector from the backbone network.

Detection Network: Instead of directly predicting the

continuous value of the ISTI signal from the output of

LSTM network, we have divided the whole range [0,1] of

ISTI values in n number of bins following [34]. To obtain

the exact value of the ISTI signal (ÎSTI) from each frame

the expectation of the probability is taken for over all bins

(îstibins),

îstibins = D (lo); ÎSTI = E (îstibins) (10)

where D stands for detection network which consists of

fully connected layers, îstibins is the probability of each bin,

E is the Expected value, ÎSTI is the predicted ISTI value of

each frame. This two stage approach makes our network

more robust.

The predicted ÎSTI signal is fed to stress detection net-

work which consists of fully connected layers, see Fig-

ure 4. The output of this network is probability of stress for

the subject whose ISTI signal is estimated by our spatial-

temporal network.

3.4. Multi Loss Approach

Previous works which predicted heart rate, breathing

rate, or blood volume pulse mostly use mean squared error

(MSE) loss. Another approach bins the regression output,

and modifies the network output layer to be a multi-class

classification. This method provides more stability to out-

liers than MSE, but its accuracy is limited by the number

of bins. So for the ISTI signal prediction model, we use

the multi loss approach used by [34]. This type of loss is a

combination of two components: a binned ISTI classifica-

tion and an ISTI regression loss.

L (Θ) = BCE (îstibins, istibins) +

α . MSE(ÎSTI, ISTI)
(11)

For the stress detection network only binary cross en-

tropy (BCE) is used as loss function.

4. Experiments

4.1. Dataset
42 healthy adults (22 males, mean age 20.35 years) were

recruited as part of the Biomarkers of Stress States (BOSS)

study run at UC Santa Barbara, designed to investigate how

different types of stress impact human brain, physiology

and behavior. Participants were considered ineligible if any

of the following criteria applied: heart condition or joint is-

sues, recent surgeries that would inhibit movement, BMI

Figure 5. CPT/WPT Setup and Protocol. An example of a fully

instrumented participant is shown. Participants followed instruc-

tions for the protocol presented on a computer monitor. After the

baseline period the participant is instructed to position both feet

on the edge of the bucket and prepare for immersion (prep). They

then immerse the feet for 90s, then withdraw the feet and rest them

on a towel for a 40 s recovery period.

> 30, currently taking blood pressure medication or any

psychostimulants or antidepressants. Informed consent was

provided at the beginning of each session, and all proce-

dures were approved by Western IRB and The U.S. Army

Human Research Protection Office, and conformed to UC

Santa Barbara Human Subjects Committee policies.

Participants attended the lab for five sessions on five sep-

arate days as part of the BOSS protocol. For collection of

impedance cardiography (ICG), 8 electrodes were placed

on the torso and neck, two on each side of the neck and two

on each side of the torso. For electrocardiogram (ECG),

2 electrodes were placed on the chest, one under the right

collarbone. For videos, thermal camera (Model A655sc,

Flir Systems, Wilsonville, OR, USA),was positioned ∼65

cm from the participant’s face and set to record at 640 ×

240 pixels and 15 Hz frame rate. A large metal bucket

was then positioned in front of the participant’s feet. In

the Cold Pressor Test (CPT) session, the bucket was filled

with ice water (∼ 0.5 ◦ C), whereas the in the control ses-

sion (Warm Pressor Test; WPT), the bucket was filled with

lukewarm water (∼ 34 ◦ C). In each session, participants

were required to immerse their feet in the water five times

for 90 s, following the test protocol outlined in Figure 5.

The CPT is popular method for inducing acute stress in hu-

mans in the laboratory. It causes pain and a multiplex of

physiological responses e.g. elevated heart rate and blood

pressure and increased circulating levels of epinephrine and

norepinephrine [56, 2]. The WPT was devised as an ”ac-

tive” control task, designed such that participants engaged

in exactly the same protocol as with the CPT, but with-

out the discomfort of cold-water immersion. This ensured

that any psychological or physiological effects induced by

engaging in the protocol and immersing the feet in water,

were controlled for. Each of the five CPT/WPT immersions

were separated by ∼ 25 minutes. Between immersions, par-

ticipants completed tests designed to measure performance
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across a range of cognitive domains (these data are not re-

ported in this paper). Session order was counterbalanced

between participants.

Nine participants’ data were excluded due to technical

failures (the thermal imaging camera failed to record one

or more sessions). Thirty-three participants’ data were used

for modeling. This sample is similar in size to existing pub-

lic data sets of a similar nature [40, 20].

4.2. Evaluation Metrics

Performance metrics for evaluating ISTI prediction are

Mean Squared Error (MSE) and Pearson’s correlation coef-

ficient (R). For stress detection, average precision (AP) is

used as the validation metric.

Mean Squared Error is a model evaluation metric used

for regression tasks. The main reason for using MSE as

evaluation metric is that the precise value of predicted ISTI

signal is important.

Pearson Correlation coefficients are used in statistics to

measure how strong a relationship is between two signals.

It is defined as covariance of the two signals divided by the

product of their standard deviations. Pearson correlation is

also used here as an extra validator on the predicted ISTI

signal, signifying that the shape of predicted curve also cor-

responds well with the ground-truth.

ρX,Y =
cov(X, Y )

σX . σY

Average Precision (AP) is the most commonly used eval-

uation metric for object detection tasks [10]. It estimates

the area under the curve of precision and recall plot. Pre-

cision measures how many predictions are correct. Recall

calculates the correctly predicted portion of the ground truth

values.

4.3. Implementation Details

In experiments, the effectiveness of the spatio-temporal

network is evaluated. The dataset is split as follows: 80%

training, 10% validation and 10% testing set. The input

video frames are cropped to 360 × 240 to remove the lateral

blank areas before being fed to our emission representation

model.

For backbone model, experiments with different ar-

chitectures of resnet were performed, those are resnet18,

resnet34, resnet50, resnet101. In the final model resnet50 is

used as feature extractor. The output of resnet50 is average-

pooled instead of max-pooling operation. The reason for

that is removing a less important feature from important

feature (max-pool operation) can reduce the signal-to-noise

ratio in physiological measurement, so average pooling is

used to keep even the less important feature vector infor-

mation. Before feeding to temporal network, the average-

pooled feature vector is reshaped so that each input se-

Name of the Method PC Coefficient MSE

Baseline 0.170 103.829

DeepPhys [8] 0.575 47.530

I3D [7] + Detection Network 0.84 5.227

StressNet 0.843 5.845

Table 1. StressNet’s performance in predicting ISTI signal. The

performance is measured on Pearson-Correlation Coefficient(PC

Coefficient) and mean square error. Our model clearly outper-

forms the existing methods by a good margin.

quence to LSTM consists of 1 second of time informa-

tion. The reasoning was that since the peaks of ECG and

∂Z/∂t signal occurs almost once per second, the LSTM

network will better captures the relation between adjacent

peaks. For the temporal network, we experimented with

a number of LSTM layers (2-8), 6 LSTM layers are best

suited for capturing the temporal contextual information.

Hidden unit size is kept at half the feature vector length

from the spatial network (resnet50), hidden unit size is

256 × frame rate, ensuring that the number of memory

cells is sufficient enough to transfer information from pre-

vious LSTM cell to next. The number of fully connected

layers following LSTM is two, with ReLU added as non-

linearity. The output of the final fully connected layer is 33

bins output. 33 bins is an empirical value.

The emission representation model works online in the

pipeline and is loaded on the same machine on which deep

learning model is trained. Each video is approximately of

size (frames × H × W) 2500 × 640 × 240 with 16bit depth

information per pixel. Due to memory constraints on the

GPU, batch size is kept at 500 frames. The learning rate

for resnet50 is started at 0.001, for LSTM and FC layers

at 0.01, which reduces after every 10 epochs by a factor of

0.1. Stochastic Gradient Descent is used as optimizer for

the network.

5. Results

The proposed method is evaluated in two main criteria.

First we evaluated the quality of our predicted ISTI signal,

then we tested the effectiveness of the predicted ISTI signal

in detecting stress.

Predicting ISTI Signal: For the first part, as mentioned

in the evaluation metrics section, the model performance is

evaluated on Mean Squared Error (MSE) and Pearson Cor-

relation coefficient (PC Coefficient). In Table 1 our model’s

performance can be seen compared to the other methods.

Our model outperforms the other methods in both of the

evaluation metrics with a good margin. As shown in Fig-

ure 6, our model agrees well with the ground truth signal in

both stress and no-stress cases.

Since no work has been done on detecting the ISTI signal
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Figure 6. Quality of our predicted ISTI signal in stress and no-

stress conditions. Data shown are examples from a single partic-

ipant’s data (selected at random). The ”Base”, ”Prep”, ”Immer-

sion” and ”Recovery” labels refer to the different phases of the

CPT/WPT procedure.

Input Signal AP (Average Precision)

Heart Rate (HR) 0.753

Heart Rate Variability(HRV) 0.814

ISTI (Ground Truth Signal) 0.902

ISTI (StressNet Predicted) 0.842

Table 2. StressNet can classify stress state with greater AP using

contact-less ISTI estimates when compared to other commonly

used contact-less signal estimates (HR and HRV).

before, to validate our model we have implemented Deep-

Phys [8]. As can be seen in Table 1 our implementation of

DeepPhys model [8] did not perform well in detecting the

ISTI signal. This poor performance mostly stems from two

main reasons. First, DeepPhys model is designed to pre-

dict periodic physiological signals and since ISTI is non-

periodic in nature, loss in DeepPhys does not suit this par-

ticular task. Second, the skin reflection model in [8] does

not expand properly for modeling the infrared radiation.

For baseline methods, ECG signal is extracted from the

face using simple statistical filtering methods. According

to [9, 13, 48] temperature changes in the tip of the nose and

forehead can index different stress states, so for our base-

line approach we tracked these regions and then band-pass

filtered to extract the signal. This signal is quite noisy which

contributes to our baseline’s poor performance.

Figure 7. Importance of ISTI signal in detecting stress. Ground

truth ISTI data from a single participant (randomly selected) are

shown. Clearly, ISTI signal in the stress condition is different from

the ISTI signal in no-stress condition. The ”Base”, ”Prep”, ”Im-

mersion” and ”Recovery” labels refer to the different phases of the

CPT/WPT procedure.

Detecting Stress: For the second part of stress detection,

we evaluate whether the ISTI signal provides a robust index

for stress detection.

An example of the ISTI response to CPT/WPT in a single

participant is shown in Figure 7. Here, we observe a clear

distinction in ISTI in anticipation of cold- vs. warm- water

immersion (i.e. during the prep period) as well as during

immersion and recovery.

To evaluate the predictive validity of the ISTI signal,

we compare it to heart rate (HR) and heart rate variability

(HRV) by entering these alternative signals into our model.

We compare ISTI with HR and HRV because these mea-

sures are considered to be reliable indices of stress [41] and

have been used in many stress classification studies [5, 30].

Here, we compute them from the ground truth ECG signal.

HR is computed by counting number of beats in a sliding

window approach with window size 15 (seconds) and stride

1 (seconds). For HRV, time between R peaks is recorded

over a defined time interval (15 seconds) and then HRV is

computed according to the Root Mean Square of Successive

Differences (RMSSD) method [11].

In Table 2 we can see how our predicted ISTI signal

is better in detecting stress state than HR (12% higher AP)

and HRV (4 % higher AP). Also, higher AP with the ground

truth ISTI signal confirms that ISTI is the most reliable in-

dex of stress state in the context of our dataset.

5.1. Ablation Study

Analysis of Emission Representation Model: The

overall architecture of StressNet consists of three main
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Name of the Backbone PC Coefficient MSE

vgg19 [39] 0.605 33.164

resnet18 [17] 0.749 15.095

resnet34 [17] 0.815 6.223

resnet50 [17] 0.843 5.845

resnet101 [17] 0.779 14.373

Table 3. Comparison of different backbones’ performance. In the

task of estimating ISTI signal resnet50 is better than all other back-

bones.

models: the emission representation model, the spatial-

temporal model and the detection model. To evaluate how

each model affects the overall performance, we evaluated

the spatial-temporal model with and without the emission

representation model. The fully pre-trained network was

tested without the emission representation model and we

observed a 1.119 increase in the mean squared error in pre-

dicting the ISTI signal. The best results for ISTI signal pre-

diction as mentioned in table 1 are obtained using all three

models mentioned above.

Analysis with Backbone CNNs: The spatial-temporal

model is evaluated with all the ResNet models [17]. We also

tested with VGG19 [39] as our backbone. The performance

comparison is shown in table 3.

Analysis with Breathing signal: The breathing signal is

captured by tracking the area under the nostrils for changes

in temperature. The computed time series signal is passed

through band-pass filter with low and high cutoff frequen-

cies of 0.1 Hz and 0.85 Hz, respectively. This breathing

signal is also used as an input to our stress detection model

and the predictions from this model are multiplied with the

predicted ISTI signal input. This process boosts the stress

detection results by 0.1774 AP. This shows how ISTI can be

combined with other physiological signals to detect stress.

Limitations of the Model: Despite being instructed to

stay still, participants occasionally made large head move-

ments and/or obscured their face with a hand (see Figure 8).

There were also occasions where the ECG/ICG signal was

noisy due to movement or bad electrode connections. In

these instances the model fails to detect ISTI.

Different Spatial Temporal Network: To validate the

effectiveness of spatial temporal networks in detecting ISTI

signal, we implemented I3D [7] architecture, a 3D convo-

lution based spatial-temporal network proposed for action

recognition. We replaced the classification branch in I3D

with our detection network. The performance is similar to

StressNet’s performance.

6. Conclusion

Here we present a novel method for the estimation of

ISTI from thermal video and provide evidence suggesting

ISTI is a better index for stress classification than HRV

Figure 8. Example StressNet failure cases. Network performance

is impaired when the face is outside the video frame or obscured.

or HR. Overall, our method is more accurate than exist-

ing methods when performing binary stress classification

on thermal video data.

Our model achieved state-of-the-art performance, and

performance could potentially be boosted even further by

using different spatial-temporal models. The most success-

ful backbone model used only spatial data from each frame

independently, compared to the I3D network [7] that em-

ployed simultaneous processing of both spatial and tem-

poral information. However, to test this we require larger

dataset, that would allow for improved pre-trained initial-

ization of the spatial-temporal backbones and better transfer

learning performance.

This work has several limitations. First, it is unclear

whether StressNet’s performance can generalize to the clas-

sification of different forms of stress e.g. social stress, phys-

ical and mental fatigue. Second, it is possible that exposure

to lukewarm-water in the control condition may have in-

duced eustress (beneficial stress), meaning that StressNet

is actually classifying distress vs. eustress, not distress vs.

neutral states, and this may impact performance. Third, the

data used to test StressNet were collected under controlled

laboratory conditions, so it is unclear how performance may

be impacted in real world use case scenarios that may by

subject to increased atmospheric noise and movement ar-

tifacts. Further testing with a diverse range of datasets

collected under different stress conditions and scenarios is

required to determine the efficacy and generalizability of

StressNet in the real world.
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