
ARTICLE

The transverse occipital sulcus and intraparietal
sulcus show neural selectivity to object-scene size
relationships
Lauren E. Welbourne 1,2,3✉, Aditya Jonnalagadda4, Barry Giesbrecht 1,2,5 & Miguel P. Eckstein 1,2,4,5✉

To optimize visual search, humans attend to objects with the expected size of the sought

target relative to its surrounding scene (object-scene scale consistency). We investigate how

the human brain responds to variations in object-scene scale consistency. We use functional

magnetic resonance imaging and a voxel-wise feature encoding model to estimate tuning to

different object/scene properties. We find that regions involved in scene processing

(transverse occipital sulcus) and spatial attention (intraparietal sulcus) have the strongest

responsiveness and selectivity to object-scene scale consistency: reduced activity to mis-

scaled objects (either unusually smaller or larger). The findings show how and where the

brain incorporates object-scene size relationships in the processing of scenes. The response

properties of these brain areas might explain why during visual search humans often miss

objects that are salient but at atypical sizes relative to the surrounding scene.
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V ision at the point of fixation, the foveola, is processed with
high-spatial resolution1 and is not degraded by patterns
flanking a target (e.g., crowding2). Vision away from the

point of gaze, in the visual periphery, is processed with less spatial
detail and is subject to crowding3. A foveated visual system
reduces the brain’s computational cost but must rely on several
strategies to ensure successful search for objects in scenes. Guided
eye movements to point the high-resolution fovea to regions in a
scene are critical to acquiring task-relevant information4–6.
Humans rely on statistical relationships between the object
searched and the scene to guide eye movements and make search
decisions7–9. For example, the brain rapidly processes informa-
tion about a scene, including its category (indoor, outdoor, nat-
ural, city, etc.10), the configuration of objects11–15, and highly
visible objects that often co-occur with the target16. This infor-
mation is then used to direct eye movements towards locations
expected to contain the searched object10,11,14,17–19. In addition,
humans also use scene information to guide attention towards
target spatial sizes that are consistent with the scene20. For
example, if one is searching for a pencil, then a scene with a desk,
a computer, and a keyboard all provide information about the
likely relative size of the pencil to the rest of the scene. When a
target appears at an anomalous size, humans can often miss such
targets, even if they are large and salient20,21. The tendency to
miss inappropriately scaled objects is not a maladaptive human
behavior but rather a by-product of a useful brain strategy to
rapidly discount potential distractors that might look like the
target but are not at the correct spatial scale.

The locus of cortical representations of statistical relationships
in scenes, crucial for visual search, has been the focus of many
studies. The parahippocampal place area (PPA) encodes impor-
tant components of scenes, specifically layout and general geo-
graphical features of space22,23. Parahippocampal sub-regions24,25

also represent semantic and spatial associations between co-
occurring objects (but see26). The expected location of a target
object within a scene is represented in the lateral occipital com-
plex (LOC), the intraparietal sulcus (IPS), and the frontal eye
fields (FEF)27. In relation to object size, previous studies have
shown that the physical size of real-world objects is represented in
the occipitotemporal regions of the cortex, with an organization
of real-world size preference across the ventral surface. Small
objects are more strongly represented in the object region LO,
whereas large objects are more strongly represented in scene
regions (e.g. PPA)28,29.

To our knowledge, little is known about which brain areas are
responsive to the spatial scale of an object relative to the sur-
rounding objects in the scene. Such brain areas might play an
important role in guiding attention during search toward likely
target sizes20. We used functional magnetic resonance imaging
(fMRI) to understand the responsiveness and selectivity of var-
ious brain regions to size relationships between an object and the
surrounding scene while controlling for other properties of our
stimuli, which also affect neural responses (BOLD activity). We
will refer here to these size relationships as object-scene scale
consistency. Subjects maintained gaze on a central fixation point
while viewing computer-generated scenes that preceded the
appearance of foveal objects onto the scene, which varied in size
relative to the surrounding scene. To ensure attention was
maintained, the subjects’ task was to detect blank trials in which
no object appeared in the scene. We investigated activity in
functionally-defined scene regions PPA, TOS, and retrosplenial
cortex, RSC; object region LO; IPS, which is involved in spatial
attention and eye movements; the fusiform face region FFA, as a
control comparison; and an anatomically-defined early visual
area, V1. We utilized general linear models (GLM) with a finite
basis response function30 and multi-voxel pattern analysis

(MVPA)27,31 to quantify the responsiveness of voxels and brain
areas to object-scene scale consistency. To isolate the effects of
object-scene scale consistency on BOLD activity from influences
of real-world object (physical) size, object retinal image size, and
scene field-of-view, we used a voxel-wise encoding model32,33.
This method provided voxel responsiveness to the various object
properties within the different brain regions of interest (ROIs),
allowing us to identify the contribution of object-scene scale
consistency to the BOLD time series while other properties were
also taken into account. A comparison across feature weight
values allowed separating overall responsiveness of an area to
visual information from how selective a voxel was to a single
feature rather than broadly tuned to multiple features34–36.

We found that scene region TOS and attention-related area IPS
showed strong evidence of responsiveness and selectivity to
object-scene scale consistency. Specifically, these regions
responded more strongly to objects that were correctly scaled
within a scene, than to objects that were mis-scaled relative to the
scene, and they also contained voxels that responded more
strongly to this feature (object-scene scale consistency) than to
other properties (i.e. real-world object size, retinal size, or
scene field-of-view). TOS and IPS may therefore play a role in
the behavioral effects previously observed, when the target object
is too large in size relative to the surrounding objects in the
scene20.

Results
Regional brain responses are modulated by object-scene scale
consistency. We first used a univariate analysis (General Linear
Model, GLM) to investigate the extent to which object-scene
scale consistency evoked differential brain responses in the
defined regions of interest (see Fig. 1 for stimulus examples and
experimental design). Specifically, we assessed whether the nor-
mal scale condition produced a greater response than the mis-
scaled conditions. In this first analysis (Fig. 2a), all ROIs, except
FFA (p= .561) and V1 (p= .741), showed a reduction in BOLD
responses for mis-scaled levels, with a higher GLM beta weight
for the normal scale consistency level (p= .001 for LO and RSC,
and p < .001 for TOS, PPA, and IPS, all p-values from permu-
tation tests using 1000 permutations, one-tailed, with false-
discovery rate (FDR) correction across ROIs). In a second uni-
variate analysis, the data were split by the direction of mis-
scaling (half of the 10 stimulus objects were mis-scaled to be too
small, while the other half were mis-scaled to be too large). The
purpose of this analysis was to determine whether each direction
of mis-scaling produced the same effect (i.e., when the objects
were either too large or too small). The results, shown in Fig. 2b,
revealed that only TOS and IPS demonstrated this same pattern
for both directions of mis-scaling (TOS, mis-scaled too small p
< .001, mis-scaled too large p= .005; IPS, mis-scaled too small p
= .036, mis-scaled too large p= .035 (1000 permutations, one-
tailed, FDR corrected)). Whereas, PPA, RSC, and LO only
reached statistical significance when large objects were mis-
scaled to be smaller than normal (larger beta weights for the
normal scale level) (p= .005, p= .036, and p= .036, respectively,
1000 permutations, one-tailed, FDR corrected). The mis-scaled
levels were not significantly lower than the normal level for
either mis-scaling direction in FFA and V1, or in one direction
for PPA, RSC, and LO (FFA mis-scaled too large p= .128; FFA
mis-scaled too small p= .189; V1 mis-scaled too large p= .999;
V1 mis-scaled too small p= .070; PPA mis-scaled too large
p= .109; RSC mis-scaled too large p= .128; LO mis-scaled too
large p= .098; 1000 permutations, one-tailed, with FDR correc-
tion across all tests and ROIs). The data in Fig. 2 is available in
Supplementary Data 1.
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Patterns of regional brain responses discriminate between
levels of object-scene scale consistency. To assess whether
information about object-scene scale consistency was available,
not only in the overall amplitude of the BOLD response but also
in the activity patterns in the functionally-defined regions of
interest, we conducted a multi-voxel pattern analysis (MVPA).
The analysis was conducted on each subject in each ROI, and the
goal was to predict the scale consistency of the object on each
trial: normal scale vs. mis-scaled (see Methods). To reduce the
feature dimensionality, the voxels used for each ROI in this
analysis were those defined as the top activation voxels based on
the pre-event scene presentation (across all trials) relative to the
blank period baseline of each ROI (see Methods). The MVPA
results (Fig. 3) were consistent with the univariate analysis, such

that patterns of activity in areas TOS (p < .001) and IPS (p= .002)
discriminated trials containing object-scene scale consistent
objects from those that contained object-scene scale inconsistent
objects. In addition, significant discrimination was also found in
areas PPA (p < .001) and V1 (p < .001) (significance determined
using permutation tests: 1000 permutations, one-tailed, FDR
corrected across ROIs). Areas RSC, LO, and FFA did not reach
statistical significance (p= .490, p= .396, and p= .396, respec-
tively; 1000 permutations, one-tailed, FDR corrected across
ROIs). The data in Fig. 3 is available in Supplementary Data 2.

Voxel-wise encoding models reveal feature selectivity to object-
scene properties. Our univariate and multivariate analyses

Fig. 1 Stimulus examples and fMRI events. a Small object (toothbrush), normal object-scene scale consistency level. b Small object (toothbrush), maximum
mis-scaled level. c Large object (car), normal object-scene scale consistency level. d Large object (car), maximum mis-scaled level. Images a and b show a
retinal size manipulation (fixed scene field-of-view (FOV), with changing object retinal size). Images c and d show a scene FOV manipulation (fixed object
retinal size, with changing FOV). e Schematic of a single trial presentation in the fMRI experiment. For visibility here, the central fixation point is shown larger
than the actual size used and with a lighter gray outer ring (in the actual experiment the gray ring matched the background gray of the screen). f Example of the
event order in a single scan. Each vertical multi-colored line indicates the onset time of an event, with the property levels for each of four properties that can be
defined in the images (scale consistency, object retinal size, real-world size, scene field-of-view) indicated by color (see legend).
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evaluated the responsiveness to object-scene scale consistency
within different functionally-, and anatomically- (V1), defined
areas. Yet, those analyses do not explicitly account for other
properties of the stimuli that also varied as we manipulated
object-scene scale consistency (e.g., retinal size, scene field-of-
view). To isolate responsiveness and selectivity to object-scene
scale consistency from other object/image properties that co-
varied with the manipulation, we used a voxel-wise encoding
model. Such models attempt to account for the time course of
BOLD responses in a voxel in terms of a combination of a set of
feature values, which can be the response levels of a number of
hypothetical receptive fields33 or image features/categories32. The
resulting weights for each feature that maximize the model’s
prediction of the BOLD response for the voxel are indicative of
the responsiveness of the voxel to the feature. A voxel-wise
encoding model was therefore applied to estimate the contribu-
tion of each of the object properties (the features) to the fMRI

signal within each ROI voxel for each subject (see Fig. 4a for a
schematic illustration of the encoding model method). The ana-
lysis utilized four object properties: scale consistency, retinal size
of the object, real-world size, and scene field-of-view (see
Methods).

To determine the overall responsiveness of an area to each of
the features, we first tested whether the mean voxel feature
weights were significantly different from zero using permutation
tests (see Methods for details). Figure 4b shows the mean feature
weights for each property across all voxels in each ROI. The
results are consistent with those obtained with the univariate
GLM and MVPA methods but with higher statistical power. All
areas that showed significant responsiveness to scale consistency
in any of the GLM and MVPA methods (TOS, PPA, IPS, RSC,
LO, V1), resulted in a significant mean feature weight for scale
consistency in the encoding model (all p < .001 except V1 where
p= .015, 1000 permutations, two-tailed, FDR corrected across all

Fig. 2 GLM results. Mean beta weights with SEM error bars (a) across object-scene scale consistency levels, in each ROI; b across object-scene scale
consistency levels, where conditions are split by mis-scaling direction (half of the objects are in each mis-scaling direction). Significant differences between
normal scale consistency levels and the mean of the mis-scaled levels are indicated above the relevant plots, tested for significance with permutation tests:
**p < .001, *p < .01, Δp < .05 (1000 permutations, one-tailed, FDR corrected). Example images, with targets (circled red) corresponding to normal, too
small, and too large, are shown below the plots. Error bars show the standard error of the mean (SEM). Individual subject data points are overlaid on the
bars as gray circles.
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properties and ROIs). The negative value for the scale-consistency
feature weights signifies that the BOLD activity is reduced with
increasing scale inconsistency between the target object and
surrounding objects/background. Furthermore, the results show
that the different areas are also significantly responsive to other
feature properties: object retinal size, real-world object size, and
field-of-view. For example, TOS also resulted in statistically
significant positive feature weights for increasing real-world size
and scene field-of-view (both p < .001, 1000 permutations, two-
tailed, FDR corrected across all properties and ROIs), i.e., a
greater response to larger real-world object sizes and scene FOVs.
LO resulted in a positive feature weight for scene field-of-view but
negative feature weight for real-world size (both p < .001, 1000
permutations, two-tailed, FDR corrected across all properties and
ROIs), i.e., a greater response to larger scene FOVs and to smaller
object sizes (a decreased response to larger real-world object
sizes). Other properties reaching significance for the ROIs are as
follows: PPA, scene FOV p < .001; PPA, retinal size p= .014; PPA
real-world size p < .001; RSC, retinal size p= .025; RSC, real-
world size p < .001; IPS, scene FOV p= .025; IPS, retinal size p
= .042; LO, scene FOV p < .001; LO, real-world size p < .001; FFA,
scene FOV p < .001; V1, scene FOV p < .001; V1, real-world size p
< .001 (each using 1000 permutations, two-tailed, FDR corrected
across all properties and ROIs).

Some properties did not reach statistical significance, as
follows: TOS, retinal size p= .226; RSC, scene FOV p= .102;
IPS, real-world size p= .788; LO, retinal size p= .102; FFA, scale
consistency p= .719; FFA, retinal size p= .506; FFA, real-world
size p= .850; V1, retinal size p= .080 (each using 1000
permutations, two-tailed, FDR corrected across all properties
and ROIs). Weight magnitudes depend on the voxel’s respon-
siveness to the feature but also on the overall responsiveness of a
brain area to the visual stimuli. For example, V1 responds highest
to visual information, resulting in a significant feature weight for
object-scene scale consistency but rather small compared to other
feature weights. To measure whether voxels are selective to a
single feature or broadly responsive to all the features34–36,
irrespective of the area’s overall response to the visual stimuli, we
estimated responsiveness to object-scene scale consistency relative
to other features. We concentrated on voxels with the highest
responses to the object-scene scale consistency rather than
include in our analysis voxels that were not very responsive.
Are voxels that are highly responsive to changes in scale
consistency less responsive to other features (high selectivity) or
are they broadly tuned to many properties (low selectivity)?

Using absolute values, we computed the ratio of the scale
consistency feature weight to the sum of all feature weights for
just those voxels that were highly responsive to scale consistency
(for each area the top 30% most responsive voxels to scale
consistency, see Methods). If we were using all voxels, an average
feature weight ratio of 0.25 would be expected by chance.
However, because we are subsampling the voxels with high
responsiveness to object-scene scale consistency, we expect
statistically that the average feature weight ratios be larger than
0.25 just by chance. Therefore, we used the permutations and
extract feature weight ratios in exactly the same way as we did for
the actual data (i.e., for the top 30% of voxels most responsive to
scale consistency, from every permutation, see Methods) and
assess the statistical significance of voxel selectivity. Figure 4c
shows histograms from the permutation data of the average voxel
feature weight ratio for scale consistency expected by chance. The
dashed arrow for each ROI indicates the mean feature weight
ratio for scale consistency (in the top 30% of voxels most
responsive to scale consistency) observed in the actual data. ROIs
TOS and IPS resulted in a statistically significant indication of
selectivity to object-scene scale consistency (TOS p= .014, IPS
p= .028, 1000 permutations, two-tailed, FDR corrected across
ROIs). This indicates that the voxels most responsive to scale
consistency within these two ROIs were also particularly narrowly
tuned to scale consistency over the other properties (retinal size,
real-world size, and scene field-of-view). In V1, the mean feature
weight ratio for scale consistency was significantly lower than
expected by chance (p < .001, 1000 permutations, two-tailed, FDR
corrected across ROIs). This indicates that the voxels most
responsive to scale consistency in V1 were still significantly more
responsive to one or more of the other properties than to scale
consistency (in line with the larger feature weights produced for
real-world size and scene FOV across all voxels in V1, shown in
Fig. 4b). The selectivity to scale consistency in all of the other
ROIs did not reach statistical significance (PPA, p= .129; RSC,
p= .467; LO, p= .163; FFA, p= .129; 1000 permutations, two-
tailed, FDR corrected across ROIs). The data in Fig. 4 is available
in Supplementary Data 3.

To assess the validity of the encoding model, we evaluated
whether we could predict the average voxel BOLD response per
ROI for each scale consistency condition (analogous to the
univariate GLM analysis, in Fig. 2b) from the encoding model’s
feature weights and the feature values of each image presented
during the fMRI runs. Presumably, the univariate GLM analysis
on voxel response for each area (Fig. 2b) results from the
contributions of the various features to the BOLD activity. Thus,
the encoding model should be able to predict the variations on
mean BOLD activity across scale-consistency conditions for each
brain area. We used a Leave-One-Run-Out Cross-Validation
(LORO-CV) method to generate predictions for the BOLD
signals in each voxel for each scan run (see Methods, and
schematic in Fig. 5a). The normalized data are plotted in Fig. 5b,
using the same plotting style as in Fig. 2b. We used paired t-tests
to determine whether the predicted BOLD signal for the normal
scale level was significantly greater than the mean of the mis-
scaled levels, in each mis-scaling direction for each ROI.
We observed a significant difference in both scaling directions
for TOS (mis-scaled too small: t(13) = 6.722, p < .001; mis-scaled
too large: t(13) = 6.643, p < .001), PPA (mis-scaled too small:
t(13) = 7.198, p < .001; mis-scaled too large: t(13) = 6.539, p
< .001), IPS (mis-scaled too small: t(13) = 3.581, p = .003; mis-
scaled too large: t(13)=2.159, p = .035), and RSC (mis-scaled too
small: t(13) = 2.428, p = .027; mis-scaled too large: t(13) = 2.154,
p = .035), and for just one direction (large objects that were mis-
scaled to be too small) in LO (t(13) = 5.162, p < .001), and V1 (t
(13) = 3.939, p = .002) (all tests one-tailed with FDR correction

Fig. 3 MVPA output. Mean percent correct (PC) (%) across subjects from
the MVPA for each ROI. Permutation tests were performed to determine
whether the mean PC values were significantly different from chance (50%).
These were FDR corrected across ROIs: **p < .001, *p < .01, 1000
permutations, one-tailed, FDR corrected across ROIs. The dashed black line at
50% indicates chance level of percent correct responses. Error bars show the
SEM. Individual subject data points are overlaid on the bars as gray circles.
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across all tests and ROIs). All remaining ROIs/directions did not
show a significant difference between normal and mis-scaled
levels, as follows: FFA, mis-scaled too small: t(13) = 1.273,
p = .143, mis-scaled too large: t(13) = −0.543, p = .321; LO,

mis-scaled too large: t(13)=0.269, p = .396; V1, mis-scaled too
large: t(13) = −0.851, p = .239 (one-tailed paired t-tests, FDR
corrected across all tests and ROIs). The data in Fig. 5 is available
in Supplementary Data 4.
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The predicted BOLD data from the encoding model show
similar trends to the empirical BOLD responses obtained from
the human fMRI data (Fig. 2b). The results for TOS, IPS, LO, and
FFA were consistent across the predictions for the encoding
model and those empirically measured.

For other areas the trends agreed, yet, there were some
differences. The encoding model predicted that both directions
should be significant in PPA and RSC (both of these ROIs showed
significance in only one scaling direction in the human data). It
also predicted a significant reduction in BOLD signal for large
objects mis-scaled to be too small in V1, which did not reach
significance in the human data.

Discussion
To efficiently search, humans rely on statistical relationships
between objects and scenes. The human brain rapidly processes
the scene type, objects in the scenes, and their configuration and
utilizes such information to guide eye movements and search
decisions7–10,12,14,19,37,38. Furthermore, a recent study has shown
how scene information is also used to guide attention to likely
sizes of the searched object20. When the searched object unex-
pectedly appears at an inconsistent scale relative to the scene,
then observers often miss the targets. Little is known about the
brain areas that might mediate such an object-scene scale con-
sistency influence on search. Here, we used fMRI to assess which

Fig. 4 Encoding model method and output. a Schematic of the encoding model method used to produce property feature weights. For each voxel, the
linear-detrended BOLD responses for each event in each of the five scans were extracted using the peak-delay of the voxel-specific HRF estimate (see
Methods). Property levels for each scan were normalized between −1 and 1, and then entered into a regularized linear regression with the event BOLD
responses from the voxel to produce feature weights for each property, and subsequently, the ratio of absolute feature weights was calculated. b Mean
feature weights across voxels and subjects for each property in each ROI, with SEM error bars. Individual subject data points are overlaid on the bars as
gray circles. Values were tested for significance against zero using permutation tests: **p < .001, Δp < .05, 1000 permutations, two-tailed, FDR corrected
across properties and ROIs. c Histograms of the permutation data for the Scale Consistency feature weight ratio, when using the top 30% of voxels most
responsive to scale consistency. The mean feature weight ratio for scale consistency from the actual data is indicated by dashed arrows, with significance
indicated where relevant: **p < .001, Δp < .05, 1000 permutations, two-tailed, FDR corrected across ROIs.

Fig. 5 Predicted BOLD signals using Encoding Model Feature Weights. a Schematic of the LORO-CV method used to validate the encoding model.
b Mean predicted BOLD signals for each ROI—normalized across subjects and ROIs—for each scale consistency level, when split by object scale direction
(plotted in the same manner as the GLM data in Fig. 2b). Significance tests (paired t-tests, one-tailed) were performed between the normal scale levels and
the mean of the corresponding mis-scaled levels, FDR corrected for multiple comparisons across all tests and ROIs: **p < .001, *p < .01, Δp < .05. Error bars
show the SEM. Individual subject data points are overlaid on the bars as gray circles.
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brain areas are responsive—and selective—to object-scene scale
consistency, utilizing various analysis techniques: GLM, MVPA,
and a voxel-wise encoding model.

In order to best understand the underlying influence of object-
scene scale consistency within each functional (and anatomical)
brain region, the findings from each analysis must be interpreted
together. Table 1 shows a summary of all the results from the
current study. Across the GLM, MVPA, and voxel-wise encoding
model, regions TOS and IPS show the most consistent indication of
responsiveness and neural selectivity (high responsiveness relative
to the other features) to object-scene scale consistency: (1) brain
responses are significantly lower when objects are inconsistent in
spatial scale relative to the surrounding scene (in the GLM analysis),
(2) significant prediction accuracy for distinguishing normally-
scaled vs. mis-scaled objects (MVPA), and (3) significant respon-
siveness and selectivity to the scale consistency property were
observed after accounting for the contribution of other object
properties (voxel-wise encoding model). The control region, face
region FFA, did not show any indication of responsiveness to
object-scene scale consistency in any of the three analyses (Table 1).

Other ROIs (PPA, RSC, LO, and V1) also showed some
responsiveness to scale-consistency but were more inconsistent
(Table 1). Region PPA was modulated by scale consistency in the
MVPA, the GLM analysis when the object became smaller rela-
tive to the scene, and the responsiveness measure of the feature
encoding model. Areas LO and RSC showed a statistically sig-
nificant modulation in the GLM for objects mis-scaled to have a
smaller relative size to the scene and in the responsiveness
measure of the feature encoding model, but not for the MVPA
analysis nor the GLM analysis for objects becoming inconsistently
large relative to the surrounding scene. Area V1 showed no sta-
tistically significant modulation in any of the GLM analyses but
did show significant modulation in the MVPA, as well as in the
responsiveness measure of the feature encoding model. The fea-
ture encoding model showed no statistically significant selectivity
for object-scene scale consistency relative to other features for any
of these four areas: PPA, LO, RSC, and V1.

Are there other plausible explanations for the reported findings
of neural responsiveness to object-scene scale consistency? For
example, could the areas be merely responding to an odd-ball or
surprise rather than scale consistency? There are several indica-
tions that this is not the case. First, the vast majority of cognitive
neuroscience studies measuring responses to an odd-ball results
in an increase in an evoked potential39 or BOLD activity40,41,
while we find a reduction in activity to the mis-scaled objects.
Second, odd-ball paradigms typically use a low prevalence for the
odd-item42–44 (e.g., 20 %) while our mis-scaled objects were
presented more frequently. Third, we do not find the same effect
in all our brain areas, indicating that this is not just a general
response to odd-ball/surprise stimuli, which might be expected to
be present across a more extensive set of brain regions.

Instead, we suggest that the effects are mediated by excitatory
interactions across objects. This has been suggested for objects
that are semantically related or that spatially co-occur25,45 and
mediate increases in neural decoding accuracy of searched
objects46,47 and behavioral search performance7,8,13,17,48. The
current work suggests a similar mechanism for objects that share
relative sizes consistent with their frequent occurrence in the
visual world.

Such mechanisms would be consistent with the computational
framework of optimal Bayesian models in which probabilities of
the detection of other objects multiplicatively excite or inhibit the
estimated probabilities of a target or object being present. Such
a mechanism has been applied to model covert attention49,50 and
also search for objects in scenes10,17, as well as shown to improve
computer vision models51. In this framework, the neural
responses tuned to an object are modulated in an excitatory
manner by the responses to surrounding objects that appear at
relative sizes that frequently occur in the natural world.

Alternatively, the enhancement could be explained in terms of
a proposed theory in which individual objects compete for neural
processing of resources45,52 in a similar manner as the biased
competition of attention53. Adaptations to the typical location of
objects and their relative size would contribute towards reducing
inter-object competition and by integrating multiple objects into
group representations45,52.

The feature encoding model also estimated weights for the
three other features. TOS, PPA, RSC, and V1 all showed statis-
tically significant positive feature weights for increasing object
real-world size. This is consistent with previous results showing
scene regions TOS and PPA responding preferentially to objects
with a large real-world size, including when small objects are
perceived to be large29,54–56. Perhaps, most surprising is the
responsiveness of V1 to the real-world size of objects. Other
studies have decoded other high-level properties such a natural
scene categories from V1/V2 scenes57. One possible explanation
is some mid-level property differences that co-varies with real-
world object size58. Another explanation is feedback from high-
level areas such as those mediating perceived size59 and cate-
gorization of natural scenes57.

For area LO, the encoding model resulted in a significant
negative feature weight for real-world object size, consistent with
previous studies showing that LO typically responds strongly to
all conceptual size representations of small objects28,60 and large
real-world objects when they were perceived to be small, due to
perceived distance or the proximity to a subject’s hand54,55,61.

Almost all areas were responsive to the scene field-of-view. The
increase of activity with the field-of-view in scene-selective areas
is consistent with previous studies that have shown separate
modulation with increasing space and clutter of the scenes62. In
addition, increasing the field-of-view will increase the perceived
distance and change the object’s relative size to the surrounding

Table 1 Summary of results from each analysis.

Brain Area GLM GLM: Direction of Mis-scaling MVPA Encoding Model Responsiveness and Selectivity to Scale Consistency
Too Small Too Large Responsiveness: Feature Weight Selectivity: Feature Weight Ratio

TOS ✓ ✓ ✓ ✓ ✓ ✓
IPS ✓ ✓ ✓ ✓ ✓ ✓
PPA ✓ ✓ ✗ ✓ ✓ ✗

LO ✓ ✓ ✗ ✗ ✓ ✗

RSC ✓ ✓ ✗ ✗ ✓ ✗

FFA ✗ ✗ ✗ ✗ ✗ ✗

V1 ✗ ✗ ✗ ✓ ✓ ✗

Ticks indicate that the relevant statistical test was significant to at least p < .05 (with FDR correction), whereas crosses indicate a non-significant result. See Results section for details of each test.
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objects. Both of these properties will increase the object’s per-
ceived size, which has been shown to modulate fMRI activity.
Studies have shown that V1 responds to the perceived size of
objects, e.g., in size illusions63–65, and receives feedback from
extrastriate regions48. This would predict larger V1 activity with
increasing scene field-of-view, which is consistent with our results
of positive V1 feature weight from the encoding model. PPA and
TOS activity increase with larger perceived size/distance54 and is
also consistent with the obtained positive feature weights from
the encoding model. Thus, some of the effects of scene field-of-
view might be mediated by influences of perceived size.

However, there are some inconsistencies with past results. We
obtained LO activity increasing with scene field-of-view, while
Park et al.62 showed a reduction. The presence of a central object
in our images and its absence in the Park et al.62 scenes might
explain the discrepancy.

The encoding model also shows small but significant respon-
siveness to the object’s retinal size in some ROIs, with PPA and
RSC responding to objects with small retinal sizes (as indicated by
the negative feature weight). In contrast, no significant respon-
siveness to object retinal size was found for TOS. These results
might seem to be inconsistent with previous studies showing that
PPA and TOS, but not RSC, have increased response with object
retinal size56. However, Troiani et al.56 only found an increased
response with larger object retinal size when the objects were
present with no backgrounds. For objects in scene backgrounds,
more similar to our images, they found no effect of object retinal
size56. Our study also found a significant positive feature weight
for retinal size in IPS (responding to objects with larger retinal
size), consistent with previous results showing IPS responsiveness
to retinal size with simpler stimuli66.

For a number of areas with moderate responsiveness to object-
scene scale consistency, we obtained varying results for the three
analysis techniques. What accounts for such differences? The
MVPA and GLM discrepancies might be explained by the fact
that the two analyses are based on different voxels within an area.
GLM averages across all the voxels in a functionally segmented
brain area. In MVPA, a subset of most active voxels is sampled to
reduce the dimensionality of the data and the number of esti-
mated weights. For regions that carry discriminative information
in all voxels in the area, voxel subsampling will likely have little
effect, and GLM and MVPA techniques will tend to agree.

What might account for the differences between the GLM and
Feature Encoding Model results? The manipulation of object-
scene scale consistency required either changing the object’s
retinal size while keeping the scene constant or changing the
scene field-of-view while maintaining the retinal size of the object.
Thus, the variations of BOLD response for a given brain region
across the levels of object-consistency levels result from the
combined effects of the various features on neural activity. The
resulting feature weights from the encoding model explain some
of the discrepancies between the results from the GLM analysis.
In the GLM analysis, LO showed a significant modulation of
activity when the object became inconsistently small relative to
the scene, but not when it became inconsistently large. This result
can be explained by the feature weights associated with LO
(Fig. 4b). For size inconsistent objects that are too large, the
expected reduction in LO’s BOLD activity from diminished scale
consistency (negative feature weight for scale consistency) is
offset by increased LO activity related to increasing FOV (larger
positive feature weight for FOV). This results in a net null effect
across scale-consistency levels (Fig. 2b).

The feature weights for real-world object size can also explain
some of the GLM results. There are asymmetries in responsive-
ness to the normal-sized objects for areas PPA, RSC, V1, and LO
(left vs. right blue columns in Fig. 2b). This can be explained in

terms of the objects utilized for the scale manipulations, i.e.,
objects mis-scaled to be too large versus those mis-scaled to be
too small. To create scale-inconsistent small objects (i.e., mis-
scaled to be too small) that were visible after reducing the retinal
size in the retinal-size manipulation, the objects that were mis-
scaled to be too small were all objects with a large real-world size
(50% of images). In contrast, to create scale-inconsistent large
objects (i.e., mis-scaled to be too large) that did not become too
large in retinal size when mis-scaled, we used objects with a small
real-world size (50% of images). The interaction between the real-
world object sizes used for the manipulation of the mis-scaling
direction, and each area’s responsiveness to real-world object size,
may contribute to the GLM results; for PPA, RSC, and V1 the
positive feature weights for real-world size can explain the higher
responsiveness for scale consistent objects that are large in real-
world size (left vs. right blue columns in Fig. 2b). In contrast, LO’s
negative feature weight for real-world object size can explain its
higher responsiveness to small real-world object size (right vs. left
blue columns in Fig. 2b).

To quantitatively formalize the process of predicting the GLM
results in terms of the encoding model, for each brain region we
generated normalized BOLD activity predictions across events
using a Leave-One-Run-Out Cross-Validation (LORO-CV)
method (Fig. 5b). Comparison of Fig. 5b and Fig. 2b suggest that
the GLM results for scale-inconsistent small and large objects can
be effectively explained for many of the brain areas and condi-
tions in terms of the additive effects of the various features. There
were three exceptions that showed similar trends but differed in
the statistical results from the human results: the predictions for
PPA and RSC activity for small objects mis-scaled to be incon-
sistently large, and V1 activity for large objects mis-scaled to be
inconsistently small, which all reached statistical significance in
the predictions, while they did not for the human observers
(Fig. 2b).

To summarize, although we find responsiveness to object-scene
scale consistency in a number of areas involved in object (LO)
and scene (RSC, PPA) processing, scene region TOS and
attention-related area IPS showed the strongest evidence of neural
responsiveness and selectivity: they respond more strongly to an
object when the object-scene scale is consistent, versus when the
object is mis-scaled relative to the scene, and also contain voxels
that respond more strongly object-scene scale consistency than
the other properties. These regions may therefore play a role in
the behavioral effects previously observed, whereby performance
in visual search tasks is poorer when the target object is shown to
be too large (mis-scaled)20. This finding expands on recent lit-
erature that explores the selectivity of these regions to object
properties related to conceptual and physical size28,29,54,55, in
addition to their traditional category specificity, i.e., responding
preferentially to scenes and scene properties (e.g., layout) over
other categories such as objects or faces22,23. The implementation
of encoding models can reveal the brain areas’ joint tuning to
multiple object and scene properties and also help explain the
results of more traditional fMRI analysis (i.e., GLM).

Methods
Subjects. Fifteen subjects completed the fMRI tasks in this experiment. One
subject was excluded from the analysis due to high levels of movement (between
1.5 and 6 mm of movement in every scan) and, critically, a lack of attention due to
sleeping during the scanning sessions. All other subjects were included in the fMRI
analysis (n= 14); the mean age was 22.8 years (range 19−28), and there were 8
female and 6 male subjects. A further 240 subjects were recruited via Amazon
Mechanical Turk for an object-scene scale consistency rating task, used to acquire
perceived scale consistency ratings to validate the levels in our object-scene scale
consistency property. The Human Subjects Committee at the University of Cali-
fornia, Santa Barbara approved these experiments, and all subjects provided
informed consent to participate in the experiments.
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Stimulus images. The stimuli used in these experiments were computer-generated
using Unity (Unity Technologies) and GIMP v2.8 (https://www.gimp.org/) soft-
ware. Target objects were directly embedded within scenes, rather than using other
cues of distance and object size (e.g., a Ponzo illusion). In order to control for the
effects of object retinal size, the direction of size change during mis-scaling, and
change in the field-of-view of the background scene, a number of properties were
manipulated. A total of 10 different target objects were used: five increased in size
when mis-scaled, and five decreased in size when mis-scaled. The practicalities of
producing these images required smaller real-world objects to be used when the
size needed to be increased (toothbrush, bedside lamp, teacup, computer mouse,
and frying pan), and larger real-world objects were used when the size needed to be
decreased (sofa, car, bus shelter, playground slide, and pool table). Each object was
presented at six different scale consistency levels: 1 normal scale consistency level,
and five mis-scaled levels, of increasing scale inconsistency relative to the scene; see
details below on how these objective scale consistency levels were created. Fur-
thermore, two different manipulations were used for each target object: (1) retinal
size manipulation: the background scene image was fixed, and the change in object-
scene scale consistency was created by adjusting the retinal size of the objects, and
(2) scene field-of-view (FOV) manipulation: the retinal size of the objects was fixed,
and the change in object-scene scale consistency was created by adjusting the field-
of-view of the background scene. These conditions resulted in 12 different images
for each target object and 120 different images in total – 20 for each of the six
object-scene scale consistency levels.

The maximum mis-scaling of each object was x4 smaller/larger than the normal
size of the object, and each of the six scale consistency levels was taken from a
linear distribution between the normal and maximum mis-scaled size. In the retinal
size manipulation, the scale of the object was increased/decreased by each linear
step up to the maximum x4 mis-scaled level (original size manipulated by a factor
of: 1, 1.6, 2.2, 2.8, 3.4, and 4); this was done within the GIMP software using
isolated versions of the original size target objects exported from Unity. For the
scene field-of-view manipulation, the object mis-scaling was achieved by adjusting
the field-of-view (FOV) of the scene within the Unity software – the starting FOV
size of the scene was increased or decreased by up to a factor of 4, using the same
linear steps above, depending on whether the object was to appear to increase or
decrease in size. In each case, the object and scene layers within the Unity file were
saved in isolation and then re-combined within GIMP (following the necessary
scale adjustments in the retinal size manipulation). Examples from each of the
manipulations are shown in Fig. 1a–d. When viewed in the MRI scanner, the image
size was set at 10° (width) by 5.84° (height) of visual angle. The stimuli were
presented using MATLAB R2016b (The MathWorks Inc., Natick, MA, USA) and
the Psychophysics Toolbox67.

Object properties. In addition to the object-scene scale consistency property (scale
consistency), three other object properties were assigned to each image. These were
considered to be the primary high-level properties that differed between images
and conditions, specifically: object retinal size, real-world object size, and scene
field-of-view (FOV). For each property, the images were grouped into 4 or 5 levels,
so that each image had a level assigned for every property. The images were
designed to minimize correlations across the various other object properties with
the object-scene scale consistency property. To determine whether the scale con-
sistency levels were independent of the other object properties, we calculated
Spearman rank correlations. Correlations between scale consistency and the other
object properties were low and not statistically significant: with object retinal size
(rs(118) = −0.0227, p= .8060), real-world object size (rs(118) = 0, p= 1), or scene
field-of-view (rs(118) = −0.0840, p= .3616). All other correlations between the
remaining object properties reached statistical significance (the full table of cor-
relations can be seen in Supplementary Table 1). To avoid false-negative (Type II)
errors, the significance values were not corrected for multiple comparisons; a
conservative estimate of significance following correction for multiple comparisons
may lead us to underestimate the relationship between scale consistency and the
other properties (the significance of inter-correlations between the other properties
is inconsequential to our analysis here). See Supplementary Table 1 for the output
of the correlations, and Supplementary Figure 1 for scatter plots of the raw
property values (prior to the grouping into levels) plotted as a function of the scale
consistency level for every image.

Object retinal size for each image was calculated based on the known
presentation size and viewing distance of the stimulus, using the diagonal size of
the object (within a 2D bounding box rectangle). The scene FOV was taken from
the properties of the 3D Unity scene. The real-world object size was estimated in
inches based on the average of six representative real-world target objects (using
the diagonal size through the 3D volume), which were found using search engines
and product websites.

To confirm whether the scale consistency property levels were representative of
a perceived change in scale consistency, independent ratings were acquired from an
additional 240 subjects, using Amazon Mechanical Turk and Qualtrics (Qualtrics,
Provo, Utah, USA). A Spearman rank correlation was performed between the
grouped levels acquired from this experiment and the actual scale consistency
property levels; perceived scale consistency was highly correlated with the actual
scale consistency property (rs(118) = 0.8799, p < 10−39). For the rating task, the
images were counterbalanced across six groups of 40 subjects, such that no target

object was seen at more than one scale level by the same group of subjects; this
resulted in 40 ratings per image. Subjects were provided with the name of the target
object, and asked “How consistent is the size of the target object compared to the
scene?”. First, they were required to select a rating from a 6-point scale; the scale
options were: extremely consistent, consistent, slightly consistent, slightly
inconsistent, inconsistent, extremely inconsistent. Then, they were asked to give a
size direction judgment to further qualify their rating, which was one of either
Perfectly sized, Too small, or Too large. The Extremely Consistent rating and
Perfectly Sized judgment could only be selected together; if one was selected
without the other then the subject was prompted to check the rating and/or size
direction judgment before they could move on to the next trial. The six rating
options were coded from 0 (extremely consistent) to 5 (extremely inconsistent),
and the average rating across subjects was calculated and rounded to the nearest
whole number, such that each image was assigned to 1 of 5 groups. Prior to
beginning the task, subjects were shown four demo images as examples of the type
of images and object scales that they would be presented with; these were images
that were not included in the actual experiment but were created in the same style
using Unity and GIMP.

Imaging Procedures. A Siemens PRISMA 3-Tesla (3 T) scanner was used to
obtain both the structural and functional scans for each of the participants, using a
64-channel head/neck coil (the neck coils were disabled during the scans, leaving a
total of 50 head channels in use). Two detailed structural images were produced for
each subject in the first scanning session, which were used to produce a recon-
structed 3D brain, to be overlaid with the functional data; T1-weighted (MPRAGE,
TE= 2.22 ms, TR= 2500 ms, slice thickness= 0.94 mm, slices= 208, flip angle= 7
degrees, FOV= 241 mm, coverage= full brain, orientation= sagittal (with orien-
tation adjustments where necessary to align down the midline for each subject))
and T2-weighted (TE= 566 ms, TR= 3200 ms, slice thickness = 0.94 mm, slices=
208, FOV= 241 mm, coverage = full brain, orientation= sagittal (with orientation
adjustments matched to the T1 parameters). Localizer scans were also performed
within this first session. These were used to produce functionally defined regions of
interest (ROIs); see the Localizer Scans section below for details of stimuli. The
second session contained only the main experiment scans; five repeated scans, each
lasting approximately 10 min, were performed within the session, such that the
total session time was less than 1 hour. Short breaks within the scanner were
encouraged between each scan to avoid subject fatigue. For all the functional scans
(localizers and the main experiment), multi-band imaging was used to allow
shorter TR lengths of 700 ms, for 2 mm3 isotropic voxels, which covered the full
brain (EPI scans, TE= 36 ms, TR= 700 ms, slice thickness= 2 mm, slices= 72,
FOV= 208 mm, flip angle= 52 degrees, Multi-band acceleration factor= 8, cov-
erage= full brain, slice orientation= transversal (with orientation adjustments
where necessary to align down the midline for each subject)). The protocols for the
multi-band scanning were obtained by UCSB’s Brain Imaging Centre (BIC) from
The Center for Magnetic Resonance Research (CMRR), University of Minnesota
(http://www.cmrr.umn.edu/).

fMRI experiment design. A rapid event-related design was used. The scene
(without the target object) was presented for a randomized period between 2 and
3.5 s, with a fixation bullseye located where the target object should be (0.2° dia-
meter gray circle, overlaid with a black 0.13° diameter circle). This was imple-
mented to allow some adaptation to the scene prior to the onset of the target object
(i.e., to maximize the response to the target object itself and not just the properties
contained within the scene). The images were always positioned so that the target
object location was in the center of the screen, to minimize eye movements. After
the randomized period, the fixation point was replaced by the target object on the
scene for 500 ms, followed by a 500 ms blank period (with fixation point) prior to
the next scene onset (see Fig. 1e for an example of a single trial). To help the
subjects maintain attention throughout the scans, we used an attentional task.
Subjects were asked to press a button if the fixation point was not replaced by an
object, i.e., the fixation point would just disappear from the scene without being
replaced by anything else. There were 20 of these task trials presented throughout a
scan, which were created using the fixed FOV scenes from each of the ten target
object scenes, each presented twice throughout the scan. The 120 test images (10
target objects x 12 conditions) and 20 task images were presented across ten blocks
(14 trials per block), with a 10 s blank period (containing a fixation point) between
each block. Each block contained 2 task trials, which were presented at random
points within the block. The object’s retinal size and scene field-of-view manip-
ulations were presented in different blocks, which were alternated, i.e., a block
containing scene field-of-view manipulated images, followed by a block of object
retinal size manipulation images, etc. The image presentation order was rando-
mized for each condition manipulation set prior to splitting into blocks – the only
restriction implemented was that the same target object could not be presented for
consecutive trials. Five scans were performed for each subject.

Localizer scans. Functional regions of interest were defined using the output of
two localizer scans. To identify the intraparietal sulcus (IPS) visual area, which
responds to (amongst other things) eye movements, we had subjects carry out a
single 5-minute scan, the IPS localizer. This contained alternating blocks of
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stationary and moving fixation points (8 blocks per condition). For the blocks of
stationary fixation points, the fixation point stayed in the center of the screen for
20 s, and for the blocks of moving fixation points, the point moved from left to
right on the screen every 500 ms (to randomized positions along the horizontal
axis) for 20 s. Subjects were instructed to fixate on the point throughout the scan
(i.e., both when stationary and when moving).

Face, scene and object regions were identified using contrasts produced from a
single localizer scan, referred to as the LFP localizer because it contains all the
stimuli necessary for identifying regions LO, FFA, and PPA (amongst other
similarly-defined areas)27. This scan presented five 18-second blocks of four
conditions: faces, scenes, objects, and scrambled objects. Each block contained 18
images, which were different in each block of the same condition (image
presentation 300 ms, with 700 ms ISI). Images were 14° × 14° visual angle and were
located centrally on the screen with a 0.2 diameter black filled fixation point
overlaid in the center, which the subjects were required to fixate. To maintain
attention throughout the scan, we had subjects perform a simple one-back task.
They were instructed to press a button if they were presented with the same image
twice in a row. Three 12-second blank fixation periods were distributed across the
start, middle, and end of the scan.

fMRI data processing. A model of each subject’s brain was reconstructed from the
structural scans, using a combination of FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/)68

and Freesurfer (http://surfer.nmr.mgh.harvard.edu/)69,70, using the recon-all
function. ITKGray (http://web.stanford.edu/group/vista/cgi-bin/wiki/index.php/
Software#ITKGray adapted and developed from ITKSnap71 by R.F. Dougherty,
Stanford University) was used to check and resolve the reconstructed brains for any
handles and cavities. The 2017 version of the VISTA software (https://web.
stanford.edu/group/vista/cgi-bin/wiki/index.php/Software) (Vista Lab, Stanford
University), running on MATLAB R2016b (The MathWorks Inc., Natick, MA,
USA), was used for processing the functional data. Gray and white matter were
segmented during the reconstruction process so that analyses could be restricted to
the segmented cortical gray matter within the VISTA software72.

The functional scans were processed using mrVista (from the VISTA software),
running on MATLAB R2016b. This software was also used to perform motion
correction between and within functional scans from each session using a
maximum likelihood alignment routine73. An average of the first functional scan
within each session was used to align the functional data to the structural
reconstruction of the brain.

Functionally defined ROIs. The majority of ROIs used in this study were func-
tionally defined on an individual subject level: TOS, PPA, RSC, IPS, LO, and FFA.
First, General Linear Model (GLM) analyses were performed on the data from the
IPS and LFP localizers; then contrast maps were produced to identify areas with the
greatest functional activity to specific conditions. Active voxels were restricted to
those that were significant to p < 10−8. The contrasts used to identify each region
were as follows: intraparietal sulcus (IPS), moving > stationary; fusiform face area

(FFA), faces > objects; parahippocampal place area (PPA), retrosplenial cortex
(RSC), and transverse occipital sulcus (TOS), scenes > faces + objects; lateral
occipital visual area (LO), objects > scrambled objects. An example of the ROI
locations and the contrasts used to define each of the ROIs are shown in Fig. 6.

The location of each ROI was initially determined by identifying the
approximate anatomical locations from slices of the sagittal, coronal and axial
planes (the Gray View in mrVista), based on locations identified in previous
research23,27,74–78. Flat maps of the gray matter were then created around each of
these likely ROI areas using mrVista, to visualize a flattened 2D view of the contrast
maps. From the flat maps, and for each ROI, an outline was drawn around the
active voxel clusters (thresholded to p < 10−8 on the relevant contrast maps) that
best aligned with the likely anatomical location of each ROI, this outline ROI was
then back-projected from the flat view into the functional data space of the gray
view, and restricted such that the ROI clung to the edges of the active voxels within
the segmented gray matter.

For every functionally defined ROI, top activation voxels were defined for use in
the MVPA analysis. This categorization was performed using mean z scores for all
the scene-onset events (i.e., the start of the scene presentation for each trial, rather
than the actual onset of the object within the scene). Baseline z scores were
calculated within each voxel (zn) from the linear detrended time-series for each
scan (dn), using the mean (b) and standard deviation (sb) of the blank periods
within each scan (zn= (dn−b)/sb). Z scores for each scene-onset event were
extracted using a fixed HRF peak delay of ~5 s (7TRs= 4.9 s). The mean z scores
across events and scans for each voxel were calculated, and the 50 voxels within
each ROI that had the highest mean z scores were considered the most responsive
voxels/top activation voxels (all voxels were kept if there were fewer than 50 voxels
total for a given ROI).

Anatomically defined ROI. In order to have an ROI that represented early visual
areas, and in the absence of retinotopic scans for our participants, we created an
anatomically defined V1 ROI for each individual. This was done with the Benson
Atlas79 using the Neuropythy Python Library run in Python 2.7.12, which was applied
to the reconstructed brain images acquired from Freesurfer with the recon-all func-
tion. The V1 atlas produced by the Benson Atlas covers the entirety of the visual field,
and therefore to better represent the visual space that our visual stimuli occupied, we
restricted this ROI using a number of wedges spanning different eccentricities in each
hemisphere. Our rectangular stimulus images were 10 degrees × 5.84 degrees, but
since the fixation point of each image was always centered on the object location,
rather than on the center of the scene, the entire scene varied slightly in its position on
the retina between trials; because of this, it would not be possible to produce an ROI
that never covered any of the gray background whilst also containing all of the target
objects. Therefore, we created an anatomical V1 ROI that combined several wedges of
different eccentricity (in each hemisphere) to approximately fill the rectangular sti-
mulus area. Restricting the anatomical V1 ROI in this way serves to ensure that the
entirety of all objects is always within the ROI, despite often also including some parts
of the gray background.

The final ROI for each subject was combined across hemispheres and
comprised five wedges for each hemisphere: the first extended from 0 to 180
degrees polar angle and to 2.9 degrees visual angle eccentricity (i.e., to the
approximate height (5.84 degrees) of the stimulus, from the center of the image),
the last wedge extended from 55 to 125 degrees polar angle and to 5 degrees
eccentricity (i.e., to the width (10 degrees) of the stimulus, from the center of the
image). The three additional wedges were evenly spaced between the first and last
wedges (at 3.425, 3.95, and 4.475 degrees eccentricities, with polar angles of 32–148,
43–137, and 50–130 degrees polar angle, respectively). These wedges were created
and combined using the output of the Benson Atlas, with the Freesurfer commands
mri_vol2label, mri_binarize, mris_label_calc, mri_label2vol, and mri_convert, as
well as fslmaths from FSL.

As with the functionally-defined ROIs, top activation voxels were defined for the
V1 ROI for use in the MVPA analysis. These were defined in the exact same way as
for the functional ROIs, by calculating the mean z scores across all scene-onset events
and scans for each voxel, and then taking the top 50 voxels within the ROI that had
the highest mean z scores (all voxels were kept if there were fewer than 50 voxels).

Statistics and reproducibility
GLM analysis. We used a General Linear Model (GLM) with Rank-1 constraint
with a Finite Impulse Response (FIR) basis function (R1-GLM with FIR), as
described and implemented in the Python package hrf_estimation by Pedregosa30

(https://github.com/fabianp/hrf_estimation). This method produces an HRF esti-
mate that is equal across conditions, i.e., one HRF estimate is produced for each
voxel, with activation coefficients produced for each condition, within each voxel;
the name stems from the constraint applied to the vector of coefficients, whereby
they must lie within the space of rank one matrices30,80. Compared to other GLM
methods of accounting for individual voxel HRF estimates, Pedregosa et al.30

demonstrate that with FIR (along with an R1-GLM using separate designs (R1-
GLMS) and with FIR basis), the encoding and decoding accuracy was greater than
other traditional GLM methods. The activation coefficients outputted for each
model—the beta weights, as reported here—were averaged across voxels for each
condition, within each ROI, for each subject, prior to producing group averages
across subjects for each ROI.

Fig. 6 Functional ROI examples. a Example of ROI locations in one subject,
shown on an inflated mesh of the right hemisphere. b Contrasts from the
localizer scans used to identify each ROI are shown, along with some
examples of the stimuli. IPS was identified with the IPS localizer, and all
other ROIs were identified from the LFP localizer; see Methods for details.
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This analysis was performed twice—once using the six scale consistency levels
as the conditions and once with the levels split further, by the direction of mis-
scaling (mis-scaled to be too large vs. too small). For each, we measured the
difference between the mean beta weight for the normal scale consistency level(s)
and the mean of the scale inconsistent levels (i.e., the mean across the remaining
five scale consistency levels). We tested whether the normal scale consistency level
was significantly greater than the scale-inconsistent (mis-scaled) levels using
permutation tests; the scale consistency levels were randomly permuted across
events prior to running the GLM analysis, and then the exact same process of
averaging across voxels for each ROI and subject was performed before extracting
the difference value between the mean beta weights (the permutation difference
value). This permutation process was repeated 1000 times, and the p-value of our
data was determined by the proportion of permutation difference values that
exceeded our actual difference value for a given ROI (e.g., <5% would be considered
statistically significant). Across ROIs (and scaling directions, for the second
analysis), the significance values were false-discovery rate (FDR) corrected (all FDR
corrections in this paper were performed using the fdr_bh function81 in MATLAB,
which uses the Benjamini & Hochberg82 procedure of FDR correction).

For the anatomically defined V1 ROI, the above Python analyses were run using
Python 3.7 on a Debian 10.6 Buster operating system. For all other ROIs these
analyses were run using Python 2.7 on Ubuntu 16.04.2 operating system.

MVPA. Multi-Voxel Pattern Analysis (MVPA) was performed using a 2-class
classifier to predict whether given test events were classed as containing a normally-
scaled object or a mis-scaled object. This analysis was performed five times, such
that the classes used for training and testing were the normal scale level as well as
one of the five mis-scaled levels, in turn; the final percent correct (PC) value for each
subject in an ROI was taken as the average PC across all five analysis pairings.

For every subject, baseline z-scores were calculated for each time point in each
voxel (zn) from the linear detrended time-series (dn), using the mean (b) and
standard deviations (sb) of the blank periods of each scan from each voxel:

zn ¼ ðdn � bÞ
sb

The baseline z-score values were then extracted for each stimulus event in each
scan (for each voxel), following an event-onset adjustment to account for the peak-
delay of the hemodynamic response. This adjustment was performed for each voxel
based on the peak delay (the time in TRs to the peak of the HRF) of voxel-specific
HRF estimates; these were acquired from an additional R1-GLM with FIR basis
function, in which all events were combined into one condition, and all scans were
concatenated, before running the model to produce an HRF estimate for each voxel
(using the Python package hrf_estimation by Pedregosa30 (https://github.com/
fabianp/hrf_estimation), used for the GLM analysis). These voxel-specific HRFs
were also utilized in the voxel-wise encoding model.

A Leave-One-Run-Out Cross-Validation (LORO-CV) method was used, where
the classifier was trained on events from 4 out of the 5 scans, and then tested on the
5th scan. This was repeated until each scan had been used as the testing scan. The
classifier was trained to make a binary prediction between normal scale and mis-
scaled, this used two classes: Class 1= normal scale condition trials, and Class 0=
trials for one of the five mis-scaled condition levels (the number of trials in each class
was balanced). For testing, trials from the same conditions for the left-out scan run
(e.g., normal scale and mis-scaled level 1 conditions) were assigned to the two classes.
A linear support vector machine classifier was trained and tested (using MATLAB
functions fitcsvm, with a linear kernel; and predict). The testing phase used the output
from fitcsvm and the event data from the test scan to produce class predictions for
each event. The percentage of correct predictions was calculated for each LORO-CV
run, and then the mean percent correct (PC) was calculated across all runs for that
subject in each ROI (this was done for each of the five analysis pairings, before taking
the average across those pairings to get the final PC value for each subject and ROI).

The average PC across subjects was calculated for each ROI, and to determine
whether these mean PC values differed significantly from chance, permutation tests
were performed. For this, the same process was repeated 1000 times for each
subject/ROI; for each permutation, the labeling of the training events was
randomized, so that each event was randomly allocated to one of the two classes
during the classification stage. The rest of the procedure, for each permutation, was
identical to that described above. From the resulting 1000 mean PC values acquired
across subjects for each ROI, the significance level was extracted as the proportion
of permutation values that were greater than the mean PC values from the data.
Significance values were then FDR corrected across ROIs.

Voxel-wise encoding. To estimate the contribution of each object property to the
fMRI signal, we applied a voxel-wise encoding model to every voxel for every
subject. This process applies a regularized linear regression to the events extracted
from the linear-detrended time series of every voxel, using a predictor matrix that
contains the property level for every object property at each event; property levels
were first normalized around the mean, and then between −1 and 1, within each
property (see Fig. 4a for schematic illustration). The regression was performed
using the fitrlinear function in MATLAB. The BOLD signals from the time series of
each voxel were extracted for each stimulus event using the peak delay from the
voxel-specific HRF estimates (acquired from the same R1-GLM with FIR used in

the MVPA analysis, in which all events were combined into one condition, and all
scans were concatenated, before running the model to produce an HRF estimate for
each voxel (using the Python package hrf_estimation by Pedregosa30 (https://github.
com/fabianp/hrf_estimation))), i.e., the extracted TRs corresponded to the real-time
event onset plus the peak-delay in TRs. The predictor matrices and event signals for
each of the five scans were concatenated prior to performing the regression for each
voxel. This analysis produces a feature weight for each of the inputted object
properties for each voxel, which indicates the level of contribution that each
property has to the fMRI signal. Permutation tests were used to determine whether
the mean feature weights for each property were significantly different to chance:
the same process was repeated 1000 times, with the feature levels randomly assigned
to events at the start of the encoding model process for each permutation (every
voxel in any given permutation used the same randomized feature matrix). The
proportion of mean feature weights from the permutations that were larger (or
smaller) than the actual mean feature weight determined the p-value; since feature
weights could either be negative or positive, a two-tailed test was used, so p values
were corrected by multiplying by two, e.g., if 25 of the 1000 permutations had a
larger (or smaller) mean feature weight than the actual data, then p= .05 (.025*2).
P values were then FDR corrected across all properties and ROIs.

For each ROI, we wanted to assess whether the voxels that were most responsive
to scale consistency (i.e., those with the highest absolute feature weights for that
property), were also particularly selective for this property by having a ratio of feature
weights that was significantly larger than chance for scale consistency. First, within
each ROI, we sorted the voxels by their absolute feature weight values for scale
consistency, and then took the top 30% of voxels, i.e., those with the highest feature
values (most responsive) for scale consistency relative to other voxels in that ROI (see
Supplementary Note 1 for information on different sample sizes used for the top %,
and Supplementary Note 2 and Supplementary Figure 2 for information on
measuring the selectivity to other features). For each of these voxels, the ratio of
absolute feature weights was calculated across properties before averaging across
voxels/subjects within each ROI. The mean feature weight ratio for scale consistency
in each ROI was then tested for significance against chance using the output of the
permutation tests; for each permutation, the same process for extracting the top 30%
of voxels and the feature weight ratio was carried out. The proportion of mean feature
weight ratio values from the permutations that were larger (or smaller) than the actual
mean feature weight ratio for each ROI, determined the p-value (as this was also a
two-tailed test, a correction was applied to the p-value by multiplying by 2). P values
were then FDR corrected across all properties and ROIs. Figure 4c shows the
histograms of the permutation data, with arrows indicating the value of the actual
mean feature weight ratio for scale consistency (with significance markers).

To validate the encoding model, we used a LORO-CV method to predict the
BOLD signal responses to events in each scan. The encoding model was carried out
five times, with one scan (the test scan) being left out in turn; for every voxel, the
feature weights produced using the remaining four scans were multiplied by the
normalized feature matrix for the test scan (i.e., the property levels for all images,
normalized between −1 and 1) to produce a predicted signal. The average signal
for each voxel across each run was then calculated, before calculating the average
signal for each scale-consistency level (split by direction of mis-scaling, in the
manner plotted for the GLM data of Fig. 2b); a schematic of this method is
illustrated in Fig. 5a. The mean predicted signal across subjects and ROIs for each
condition were normalized, and the difference between the normal scale level and
mean of the mis-scaled levels was tested for significance within each ROI for each
direction of mis-scaling using paired t-tests (one-tailed, to test whether the normal
scale level was significantly greater than the mis-scaled levels) (SPSS Statistics v25,
IBM), corrected for multiple comparisons using FDR correction across all 14 tests
(two for each of the seven ROIs) (data plotted in Fig. 5b).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data underlying Figs. 2–5 are presented in Supplementary Data 1-4. All other data
generated and analyzed during the current study are available from the corresponding
author on reasonable request.

Code availability
The code used to analyze the data in the current study is available from the
corresponding author on reasonable request.
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