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Abstract
Contemporary theories of attentional control state that information can be prioritized based on selection history. Even though
theories agree that selection history can impact representations of spatial location, which in turn helps guide attention, there
remains disagreement on whether nonspatial features (e.g., color) are modulated in a similar way. While previous work has
demonstrated color suppression using visual search tasks, it is possible that the location corresponding to the distractor was
suppressed, consistent with a spatial mechanism of suppression. Here, we sought to rule out this possibility by testing whether
similar suppression of a learned distractor color can occur for spatially overlapping visual stimuli. On a given trial, two spatially
superimposed stimuli (line arrays) were tilted either left or right of vertical and presented in one of four distinct colors. Subjects
performed a speeded report of the orientation of the “target” array with the most lines. Critically, the distractor array was regularly
one color, and this high-probability color was never the color of the target array, which encouraged learned suppression. In two
experiments, responses to the target array were fastest when the distractor array was in the high-probability color, suggesting
participants suppressed the distractor color. Additionally, when regularities were removed, the high-probability distractor color
continued to benefit speeded target identification for individual subjects (E1) but slowed target identification (E2) when presented
in the target array. Together, these results indicate that learned suppression of feature-based regularities modulates target
detection performance independent of spatial location and persists over time.
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Introduction

The visual system is constantly bombarded with information,
of which only a small portion can be attended. When
searching the kitchen for ingredients to make pizza, features
and locations in the kitchen that are aligned with the goal of
making pizza get prioritized. For example, one may prioritize
search for the red tomato sauce in the cabinet. Search for
pizza-related items can be disrupted, such as when there is a
salient, unexpected, and abrupt appearance of a roommate in
the kitchen. The processing of other salient items in the scene,
such as the bright green parsley growing in the window, are
not disruptive, but instead might be suppressed due to their
regular presence in the kitchen. The ability to prioritize

specific information based on one’s goals, the automatic cap-
ture from abrupt onset salient stimuli, and the learned suppres-
sion of regularly presented items all interact to produce the
phenomenon of attentional control (Awh et al., 2012; Luck
et al., 2020).

The interplay among these signals has been characterized
within the priority map framework (Itti & Koch, 2001; Koch
& Ullman, 1985; Treisman & Gelade, 1980; Wolfe, 1994;
Zelinsky & Bisley, 2015), where a priority map reflects the
importance of specific locations within the visual field. To
compute a feature-agnostic priority map, individual maps of
specific feature dimensions (e.g., color or orientation), which
contain information corresponding to locations that are impor-
tant based on being physically salient as well as based on their
relevance for ongoing goals, are summed. Bottom-up and top-
down inputs have been well established to drive attentional
selection through behavioral (Bundesen, 1990; Duncan &
Humphreys, 1989; Olivers et al., 2006) and neural (Fecteau
& Munoz, 2006; Gottlieb et al., 1998; Serences & Yantis,
2006) studies and can modulate priority at the level of indi-
vidual feature maps (McMains et al., 2007; Runeson et al.,
2013; Saenz et al., 2002; Serences & Boynton, 2007) or an
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integrated priority map (Bisley & Goldberg, 2003, 2006;
Bogler et al., 2011, 2013).

The contribution of a third category, selection history, has
been proposed due to results that do not adhere to the canon-
ical top-down/bottom-up dichotomy (Awh et al., 2012;
Shomstein et al., 2022). Selection history is distinct from
top-down attention, as the influence of previous deployments
of attention modulate priority without the explicit awareness
of an individual and can even interfere with ongoing goals
(Hickey et al., 2010). Additionally, selection history is distinct
from bottom-up salience because selection history clearly can-
not influence the physical properties of stimuli which render
them salient.

One primary means by which selection history influences
the allocation of attention is by deprioritizing regularly pre-
sented distractors (Gaspelin et al., 2019; Stilwell et al., 2019;
Wang & Theeuwes, 2018). Such distractor suppression is of-
ten studied using the additional singleton paradigm
(Theeuwes, 1991, 1992). Briefly, this task commonly in-
volves searching for a target shape among various distractor
shapes, such as a target diamond among circle distractors. On
some trials, a critical distractor appears that is presented in a
distinct color from the rest of the display (e.g., red distractor
among green items). When present, this distractor tends to
slow response times (RTs), which is due to attention being
directed to the location of the distractor based on its salience
(Jonides & Yantis, 1988; Theeuwes et al., 2003). However,
when the critical distractor is regularly presented at a specific
position within the search array, capture effects are diminished
(Stilwell et al., 2019), or even completely abolished such that
performance is the same as distractor-absent trials (Wang &
Theeuwes, 2018). This modulation occurs without explicit
knowledge of the location regularities (Gao & Theeuwes,
2022), indicating a process distinct from top-down influences.

Suppression is thought to occur via two mechanisms:
proactive inhibition and reactive rejection (Geng, 2014).
Proactive inhibition deprioritizes information prior to the
onset of a visual display. For instance, fewer saccades are
directed towards the location where a singleton was usually
presented than any other location (Gaspelin et al., 2019;
Stilwell & Vecera, 2022), consistent with the possibility
that the learned location was suppressed prior to display
onset. Reactive mechanisms involve the rapid disengage-
ment from distracting information after covert or overt at-
tention has already been captured (Theeuwes, 2010). They
are thought to act primarily within a spatial context, as
evidence shows suppression restricted to a specific location
(Theeuwes et al., 2003). Thus, mechanisms of suppression
likely act on a feature-agnostic priority map, and not nec-
essarily at the level of individual feature dimension maps
(Luck et al., 2020). This raises the question: To what extent
do nonspatial stimulus features (e.g., color hue, shape) con-
tribute to distractor suppression?

The additional singleton paradigm lends itself to investigat-
ing the learned suppression of features such as color (Failing
et al., 2019; Stilwell & Gaspelin, 2021; Vatterott & Vecera,
2012). For example, Stilwell et al. (2019) reported that when
the location of a singleton is completely randomized, but pre-
sented in one high-probability color, RTs were faster than
when the singleton was a low-probability color. This is con-
sistent with participants suppressing specific color values
when beneficial for task performance. However, an important
aspect of the visual search tasks used in previous research is
that each item in the display has a distinct spatial position,
which inserts ambiguities on whether feature control mecha-
nisms were implemented independent of space; it could be the
case that only after a feature singleton captures attention, then
reactive mechanisms suppress the location corresponding to
the salient singleton (Luck et al., 2020; Moher & Egeth, 2012;
Theeuwes et al., 2003). One way to disentangle the influences
of features and space is to demonstrate feature-specific
deprioritization independent of location.

A common procedure to minimize the impact of space is to
use overlapping stimuli (Duncan, 1984; Giesbrecht et al.,
2003; Liu et al., 2003; O’Craven et al., 1999; Saenz et al.,
2002; Yantis & Serences, 2003). This way, spatial location
is shared among stimuli, which isolates feature-specific mech-
anisms and minimizes the ability of a spatially driven mecha-
nism to selectively suppress one, but not another, stimulus.
We adopted this strategy in the current study by having par-
ticipants perform an orientation discrimination task on two
spatially overlapping colored line arrays. In this task (Fig.
1A), participants identified which of two arrays had more lines,
then determined the orientation of the higher-density (“target”)
line array. Critically, the low-density (“distractor”) array was
typically presented in one color (Fig. 1B). If feature control
mechanisms can specifically suppress the representation of a
stimulus without necessarily suppressing all stimuli at a given
location, then we expected behavioral performance to be faster
when the distractor array was presented in the high-probability
color. However, if reactive mechanisms are suppressing the
location corresponding to the distractor array, then the target
array would also be suppressed due to their spatial overlap. If
this latter account is true, then we would expect to see no
difference in behavioral performance whenever the distractor
array was shown in the high-probability color or any of the
low-probability colors.

Additionally, it is imperative to pinpoint the duration of
suppression effects, as it is informative about the mechanism
of prioritization (Wöstmann et al., 2021). Studies have shown
that intertrial priming, or the influence of the previous trial on
current trial performance (Maljkovic&Nakayama, 1994), and
statistical learning, or the extraction of long-term display reg-
ularities to adjust future performance (Jiang, 2018; Jiang et al.,
2013; Vatterott & Vecera, 2012), both influence distractor
suppression.
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To isolate the duration of feature suppression, we included
several blocks in which color regularities were removed from
the display. In Experiment 1, during these regularity-absent
blocks, the distractor array had an equal chance of being
shown in any of the possible colors (Fig. 1C). Whereas, in

Experiment 2, both the target and distractor array had an equal
chance of being presented in the previously high-probability
color (Fig. 1C). These regularity-absent blocks allowed us to
determine the specific mode of suppression by evaluating
whether effects persisted after learning blocks, consistent with

Fig. 1 Discrimination task. A On each trial, participants were shown two
oriented line arrays, each presented in one of four different equiluminant
colors. One array was tilted clockwise from vertical, and the other was
counterclockwise from vertical. Participants determined which array had
the most lines, and then reported the orientation of that array with a button
press. B Color regularities were present during the first 12 blocks of both
experiments, such that the array with fewer lines was usually presented in
the high-probability color (65% of trials). The target array was never
presented in the high-probability color when regularities were present.
C Regularities were removed in the last eight blocks of both experiments,

meaning that the array with the fewest lines had an equal chance of being
any of the four possible colors (25%). In Experiment 1, the array with the
most lines was still never presented in the previously high-probability
distractor color. Experiment 2 allowed both the target and distractor line
arrays to be shown in any of the four colors with equal probability. The
arrays were never presented in the same color on a given trial. Images
here are illustrative cartoons; actual colors were equiluminant and line
density/orientation are described in detail in Methods. (Color figure
online)
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statistical learning, or whether they were primarily driven by
intertrial priming within the learning phase itself.

In both experiments, we found robust suppression of the
high-probability distractor color when regularities were pres-
ent. Furthermore, subjects who showed the suppression effect
when regularities were present continued to suppress the high-
probability color when regularities were absent. In
Experiment 2, we found additional evidence for long-term
distractor suppression, as RTs were slower when the target
array was presented in the previously learned high-
probability distractor color. Overall, our results demonstrate
that learned distractor colors can be suppressed independent of
a spatial suppression mechanism, and that this suppression is
supported by statistical learning of distractor feature values.

Experiment 1

The goal of Experiment 1 was to determine whether feature-
specific suppression occurs when stimuli are spatially over-
lapping. If so, this would suggest that feature control mecha-
nisms can be independent of spatial control operations. We
also sought to test whether suppression was transient, consis-
tent with intertrial priming, or whether suppression persisted
over longer periods of time, consistent with statistical
learning.

Method

Participants The study protocol was approved by the UCSB
institutional review board. Twenty-four participants (16 fe-
male, mean age = 18.5 years) were recruited from the
University of California, Santa Barbara (UCSB) subject pool.
All participants reported normal or corrected-to-normal vision
and either received course credit or $10/hr upon completing
the experimental session. Participants gave written consent
prior to participating in the study. Previous work investigating
color suppression using a visual search task (Stilwell et al.,
2019) reported an effect size of η2p = 0.68 and a power analysis

using this effect size indicated that four subjects were needed
to obtain 80% power. Since our study used a different task, we
collected data from 24 participants to ensure enough statistical
power to detect effects in our experiments.

Apparatus and stimuli Participants viewed stimuli in a dark-
ened room on a 25-in LED-backlit LCD screen with a resolu-
tion of 2,560 × 1,440 pixels. They were seated approximately
60 cm away from the screen. Stimuli were presented using
MATLAB and Psychtoolbox (Brainard, 1997).

A white (80.1 cd/m2) dot centered at fixation was presented
at the start of each block with a radius of 0.15° visual angle

against a gray (49.4 cd/m2) background (Fig. 1). The fixation
stimulus was visible throughout the whole block. On each
trial, two oriented line arrays were presented. All lines in
one array were oriented 45° clockwise of vertical, while the
lines of the other array were oriented 45° counterclockwise.
The orientation of the line arrays was randomized on each
trial. Jitter was independently added to the orientation of both
arrays randomly selected from 0.3°–1.2° orientation. Both ar-
rays were presented within an imaginary circle with a radius of
10.5° visual angle. One array always contained 60 ± 20 (ran-
domly selected on each trial) more lines than the other array.
The array with more lines was the “target,” while the other
array was the “distractor.” The number of lines in the target
array had a range of 150 to 170 lines, while the distractor array
could contain 90–110 lines. Individual lines had a length of
1.5° visual angle and a width of 0.05° visual angle. The color
of either array was selected from the following four
isoluminant colors in CIE color space: green (40.7 cd/m2, x
= 0.243, y = 0.397), red (40.6 cd/m2, x = 0.421, y = 0.285),
blue (40.3 cd/m2, x = 0.182, y = 0.175), and yellow (40.3 cd/
m2, x = 0.450, y = 0.481). The target array was always a
different color from the distractor array. Feedback text at the
end of each block was presented in gray Arial font (RGB: 100,
100, 100). Participants reported whether the target array was
oriented clockwise or counterclockwise from vertical with a
left or right button press using a USB response pad.

Design and procedure The fixation dot was presented at the
start of the experiment and was visible throughout the whole
block of 60 trials. At the start of each trial, the fixation dot was
presented alone for 1,000 ms. Participants were instructed to
attend and fixate the central dot until stimulus array onset.
Next, the target and distractor line arrays were presented for
up to 3,000 ms or until response. Participants determined
whether there were more lines tilted to the counterclockwise
or clockwise of vertical and reported the corresponding orien-
tation with a left/right button press. They were encouraged to
respond as fast as possible while still being accurate. At the
start of the experiment, a random color was selected to be the
prevalent distractor color for each subject (selected from red,
green, blue, and yellow). During the first 12 blocks of the
experiment, on 65% of trials, the distractor array was present-
ed in the selected high-probability color. For the remaining
35% of trials, the distractor array was equally presented in
one of the other three low-probability colors (11.67% of trials
for each remaining color). The target array was never present-
ed in the high-probability distractor color. The color of the
target array was randomly selected from the remaining three
colors with equal probability (33% of trials for each color),
with the additional stipulation that the target and distractor
were always different colors on a given trial. By comparing
response time (RT) and accuracy on these regularity-present
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blocks, we could determine whether participants report the
target orientation more quickly and accurately when the
distractor appeared in a high-probability color.

After the first 12 blocks, where color regularities were pres-
ent, participants performed eight more blocks of the discrim-
ination task. During these last eight blocks, the target array
color was chosen as before (33% of each nondistractor color).
However, now the distractor array had an equal chance of
being presented in any color (25% of trials for each color).
Other than the change in color probabilities, the last eight
blocks were identical to the first 12 blocks. Participants
were not informed about a change in target/distractor color
probabilities throughout the experiment. By comparing RT
and accuracy in these regularity-absent blocks, we were
able to determine if participants continue to suppress the
distractor color even when this is no longer useful. Overall
mean accuracy on the task was shown to the participants at
the end of each block of the experiment (regularity-present
and regularity-absent blocks).

Before starting the main session, participants completed a
practice session of the task, which consisted of 60 trials of the
orientation report task without any color regularities. There
were 60 trials per block of the main session, and participants
completed a total of 20 blocks over ~1 hr. Upon completing
the experiment, we interviewed participants to determine
whether they were aware of the color regularities. First, they
were asked if they noticed any patterns or consistencies with
the stimuli during the experiment. Second, they were told that
the distractor array was usually one color and were instructed
to guess the high-probability color.

Data analysis and statistical procedures Trials with an RT 2.5
standard deviations above or below the individual partici-
pant’s mean RT, along with trials that were faster than
100 ms or slower than 2,500 ms, were removed from RT
analyses. An average of 4% (SD = 1.51%) of trials were re-
moved per participant after applying these exclusion criteria.
We also excluded trials with an inaccurate orientation report
from all RT analyses (13.8% of remaining trials). The taskwas
intentionally made difficult to avoid ceiling effects, which
explains the relatively high percentage of inaccurate trials.
None of the experiments was preregistered.

We compared mean RT and accuracy on regularity-present
blocks using paired-sample t tests to determine whether par-
ticipants reported the target orientation more quickly and ac-
curately when the distractor appeared in a high-probability
color. To see if color suppression persisted when regularities
were removed from the display, we computed a two-way re-
peated-measures analysis of variance (ANOVA), with color
condition as the first factor (high-probability color vs. low-
probability colors) and regularity presence as the second fac-
tor (regularity-present blocks vs. regularity-absent blocks).

This analysis was followed by a t test comparison between
mean RTs in the high- and low-probability distractor color
conditions during regularity-absent blocks. Finally, we com-
puted the linear correlation between suppression observed in
regularity-present and regularity-absent blocks, where sup-
pression was defined as the difference in mean RT between
low-probability and high-probability distractor color trials.
For all pairwise tests, we reported Bayes factor (BF) results
using the bayesFactor package for MATLAB (Krekelberg,
2022). Evidence in favor of the null (BF01) is reported for
nonsignificant tests, and evidence against the null is reported
for significant tests (BF10). We used dz as a metric of effect
size for all t-test comparisons to account for shared variance
in our repeated measures design (Lakens, 2013).

Seven subjects correctly identified the high-probability
distractor color during a postexperiment interview, which
did not differ from chance (binomial test: p = .393). All re-
ported results were qualitatively the same when excluding
participants who correctly reported the high-probability color.
We analyzed the regularity-present suppression effect (low-
probability − high-probability RT) separately for those who
correctly identified the high-probability color and found no
significant difference compared with those who were unaware
of the color regularities (Supplemental Fig. 1a).

Results and discussion

Regularity-present performance First, we compared RT for
target orientation discrimination across all task blocks
throughout the experiment (Fig. 2A). Qualitatively, RTs were
faster when the distractor appeared in the high-probability
distractor color than when it appeared in another color.
Additionally, RTs qualitatively sped up through the experi-
ment. Next, we quantitatively established whether participants
could more efficiently report the target orientation when a
high-probability distractor color was present in the display
during regularity-present blocks (Fig. 2B). We compared
RTs (averaged across the initial regularity-present Blocks
1–12; Fig. 2A) on trials with the high-probability distractor
and trials with another color distractor. Correct orientation
reports on trials with high-probability distractor color were
significantly faster than on trials with low-probability
distractor colors, t(23) = 4.04, p < .001, dz = 0.83, BF10 =
63.39. There was not a significant difference in orientation
report accuracy between these trials (Table 1), t(23) = 1.55,
p = .134, dz = 0.32, BF01 = 1.63, indicating that the RT
advantage is not due to a speed–accuracy trade-off. These
results suggest that the high-probability distractor color was
suppressed when stimulus regularities were present.

Regularity-absent performance Next, we identified whether
distractor suppression persisted when color regularities were
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removed (Fig. 2B). To see if the difference between color
conditions changed as a function of regularity presence, we
performed a two-way repeated-measures ANOVA using RT
data with distractor array color (high-probability color vs.

low-probability colors) and regularity phase (regularity-pres-
ent vs. regularity-absent) as factors. There was no effect of
color condition, F(1, 23) = 4.01, p = .057, η2p = 0.56, but there

was a significant effect of phase F(1, 23) = 18.14, p < .001, η2p
= 0.96. The significant main effect of phase reflects the overall
faster RTs during the later regularity-absent blocks as partic-
ipants were getting better at the task. Importantly, there was a
significant interaction, F(1, 23) = 32.64, p < .001, η2p = 0.59.

This result suggests that, at a group level, once regularities
were removed from the display, the previously high-

Fig. 2 Experiment 1: High-probability distractor color is suppressed dur-
ing learning and over an extended interval.AMean RT for each block on
trials with correct orientation reports. Dashed line indicates when
distractor color regularities were removed from the display. B Mean RT
across regularity-present and regularity-absent blocks for both high- and
low-probability color conditions. Individual subject data points shown.

Significant differences between color probability conditions indicated
with * for p values < .05.CCorrelation between suppression effect during
regularity-present blocks and regularity-absent blocks. Suppression ef-
fects were computed as the difference in RT between the low- and
high-probability color conditions. Error bars are within-subject standard
error of the mean. (Color figure online)

Table 1 Experiment 1 Accuracy (± SEM)

Regularities present Regularities absent

High-probability color 87.02% (1.08) 85.76% (1.10)

Low-probability color 83.65% (1.08) 84.06% (1.10)
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probability color was no longer suppressed. Follow-up com-
parisons between high- and low-probability distractor colors
using data from the regularity-absent blocks are consistent
with this conclusion: There was no significant difference be-
tween RTs when the distractor appeared in the previously
high- versus low-probability distractor color, t(23) = 0.11, p
= .917, dz = 0.02, BF01 = 4.64.

While the above results suggest that, on average, partic-
ipants no longer suppress the distractor color with learned
regularities when the regularities are removed, we next con-
sidered the possibility that the magnitude of suppression
during the regularity-present blocks within individual par-
ticipants was carried over to the regularity-absent blocks.
That is—do participants who most strongly suppress the
learned distractor color when regularities are present also
suppress the distractor color more than other participants
when regularities are removed?

To test this, we calculated the correlation between the
amount of suppression (defined as the difference in mean
RT between low-probability and high-probability
distractor color trials) during the regularity-present blocks
and during the regularity-absent blocks (Fig. 2C). There
was a strong positive relationship between these variables
(r = .76, p < .001), indicating that subjects who sup-
pressed the distractor during regularity-present blocks
continued to suppress the distractor during regularity-
absent blocks, despite no overall mean difference in the
regularity-absent blocks across our participant sample
(Fig. 2B).

Together, these findings show that a high-probability
distractor color can be suppressed when regularities are pres-
ent within a block. Critically, suppression occurred even
when the arrays spatially overlapped, indicating that a spe-
cific color can be suppressed independent of spatial loca-
tion. It is possible that suppression in this experiment was
due to intertrial priming (Maljkovic & Nakayama, 1994), as
suppression did not, on average, persist across our partici-
pant sample once regularities were removed. But an ana-
lysis of individual participants showed that those with
stronger suppression effects when regularities were present
continued to suppress the distractor color once regularities
were removed (Fig. 2C). In addition to evaluating contin-
ued distractor suppression, previous studies have observed
suppression effects when a target stimulus is presented at a
learned distractor location (Britton & Anderson, 2020;
Wang & Theeuwes, 2018). Since the target array was never
presented in the high-probability color, it was not possible
to conduct a similar analysis in Experiment 1. Experiment 2
was designed to better understand whether nonspatial color
suppression mechanisms are transient or whether they re-
sult in suppression that persists over longer periods of time
by including trials to directly measure suppression of the
target array when regularities are removed (Fig. 1).

Experiment 2

In Experiment 1, we showed that a regularly presented
distractor color can be suppressed even when suppression
cannot operate via a spatial location. Suppression occurred if
regularities were present, but not once regularities were re-
moved, consistent with a transient suppression effect such as
intertrial priming (Maljkovic & Nakayama, 1994). However,
spatial and color regularities have been shown to persist be-
yond the effects of priming in previous studies using visual
search paradigms (Stilwell et al., 2019; Vatterott & Vecera,
2012). There was a hint of this effect at the level of individual
subjects, where those who suppressed the distractor during
regularity-present blocks continued to suppress the distractor
during regularity-absent blocks. It may have been difficult to
observe continued suppression during regularity-absent
blocks due to relatively fast performance. In Experiment 2,
we aimed to better probe the persistence of these suppression
effects by evaluating performance in the regularity-absent
blocks when the previously high-probability color appears as
the target array (Britton & Anderson, 2020; Wang &
Theeuwes, 2018). If the learned color is being suppressed,
and the persistence of this effect was masked due to fast per-
formance in the regularity-absent blocks, then suppressing the
target array may allow for long-term suppression to be more
readily observed via a slowing in discrimination performance
when the target appears in the previously high-probability
distractor color.

Method

Participants We recruited 24 new participants (18 female,
mean age = 20 years) from the UCSB subject pool. Subjects
were compensated with either course credit or $10/hr upon
completing the task. None of the participants recruited for
Experiment 2 participated in Experiment 1.

Design and procedure Experiment 2 was identical to
Experiment 1 during the regularity-present blocks (Blocks
1–12). The one critical change occurred in the regularity-
absent blocks (Blocks 13–20; Fig. 1B). Similar to
Experiment 1, the previously high-probability color had an
equal chance of being the distractor array color (25% for each
color). However, now the target array was presented in any of
the four colors with equal probability (25% for each color),
with the stipulation that the target and distractor colors were
nonidentical. If suppression is due to long-term learning, then
we would expect to see slower RTs when the target array was
presented in the previously high-probability color.
Furthermore, as in Experiment 1, it is possible that continued
suppression effects persist in the regularity-absent blocks
when the distractor array is presented in the high-probability
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color. However, due to the results of Experiment 1 (Fig. 2), we
primarily expected this suppression effect to occur on the
individual-subject level.

Analysis and statistical procedures We removed trials that
were faster than 100 ms and slower than 2,500 ms as well as
trials 2.5 standard deviations above or below individual sub-
ject means. An average of 4.28% (SD = 1.59%) of trials were
removed per participant. Trials with inaccurate responses were
also removed from RT analyses (14.72% of trials). Six partic-
ipants correctly reported their high-probability color, which
did not differ from chance (binomial test: p = 0.578). Results
are qualitatively the same when we exclude participants who
correctly identified the high-probability color. Specifically,
there was no difference in regularity-present distractor sup-
pression between those who were aware and unaware of the
high-probability color (Supplemental Fig 1B).

The same statistical tests computed for Experiment 1 were
conducted in Experiment 2 when evaluating the influence of
distractor array probabilities on performance. Additionally, to
see if the high-probability color was suppressed during
regularity-absent blocks, we computed a two-way repeated-
measures ANOVA, with target array color as the first factor
(previously high-probability distractor color vs. previously
low-probability distractor color) and block as the second fac-
tor (regularity-absent Blocks 1–8). This was followed by a
paired-samples t test comparing the mean RT across
regularity-absent blocks of high- and low-probability target
color conditions. Finally, we computed the linear correlation
between distractor suppression in the regularity-present
blocks and target suppression in the regularity-absent blocks
to evaluate individual subject long-term suppression.

Results and discussion

Regularity-present performance First, we verified that we
could replicate the suppression effect observed in
Experiment 1 during the regularity-present blocks (Fig. 2).
Matching the results from Experiment 1, we saw that RTs
were qualitatively faster when the high-probability color was
shown as compared with the low-probability colors and that
RTs increased throughout the experiment (Fig. 3A). We then
compared the mean RTs from the regularity-present blocks
between trials with a high-probability and low-probability
distractor color (Fig. 3B). RT was faster in the high-
probability color condition than the low-probability color
condition, t(23) = 4.17, p < .001, dz = 0.85, BF10 = 84.87.
This replicates the main findings in Experiment 1, where
the high-probability distractor color was suppressed when
regularities were present, resulting in faster target discrim-
ination performance. In addition, accuracy was greater for
the high-probability distractor color condition (Table 2),

t(23) = 2.77, p = .011, dz = 0.57, BF10 = 4.53. Our accuracy
results indicate that there was no speed–accuracy trade-off
and that target identification accuracy was improved when
the prevalent distractor color was present in the array.

Regularity-absent performance During the regularity-absent
blocks, the previously high-probability color could be present
in either the target or distractor array but was presented with
the same probability as all other colors. Similar to Experiment
1, we conducted a two-way repeated-measures ANOVA, with
distractor color as the first factor (high-probability color
distractor vs. low-probability colors) and phase as the
second factor (regularity-present vs. regularity-absent;
Fig. 3B). There was a main effect of distractor color con-
dition, F(1, 23) = 11.92, p = .002, η2p = 0.69, and phase

F(1, 23) = 21.08, p < .001, η2p = 0.91. These findings

demonstrate that participants were overall faster to re-
spond when the distractor was shown in the high-
probability color and that RTs were faster during
regularity-absent blocks. Importantly, there was no inter-
action between these variables, F(1, 23) = 3.74, p = .066,
η2p = 0.14, which leaves open the possibility that suppres-

sion of the previously high-probability color continued
when regularities were removed. However, follow-up
comparison showed that distractor suppression across
subjects did not persist into regularity-absent blocks,
t(23) = 1.80, p = .086, dz = 0.37, BF01 = 1.17.

To test if individual subjects continued to suppress the
learned distractor color, we computed the correlation between
the distractor suppression effect during the regularity-present
blocks and the distractor suppression effect during the
regularity-absent blocks (Fig. 3C). There was a positive cor-
relation when comparing the regularity-present distractor sup-
pression and regularity-absent distractor suppression (r = .60,
p = .002). Consistent with Experiment 1, this result shows that
participants who suppressed the high-probability color when
regularities were present continue to suppress the color when
regularities were removed.

Next, we compared RT across blocks when the target
array was presented using either the previously learned
high- or low-probability distractor color(s) to determine if
suppression effects persist when regularities were no longer
present (Fig. 4A). A two-way repeated measures ANOVA
showed that there was a main effect of condition, F(1, 161)

Table 2 Experiment 2 Accuracy (± SEM)

Regularities present Regularities absent

High-probability color 86.94% (0.86) 85.45% (1.23)

Low-probability color 82.19% (0.86) 81.66% (1.23)
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= 5.62, p = .027, η2p = 0.16, as well as a main effect of block

F(7, 161) = 2.82, p = .008, η2p = 0.29. There was no interac-

tion, F(7, 161) = 1.52, p = .165, η2p = 0.06. A paired-sample

t test showed a significant difference between target color
conditions, t(23) = 2.37, p = .027, dz = 0.48, BF10 = 2.16.
Thus, when suppression was measured by presenting the tar-
get array in the learned high-probability distractor color, we
observed persistent suppression after regularities were
removed.

We then determinedwhether suppression effects during the
regularity-present blocks in individual subjects predicted

target suppression in regularity-absent blocks (Fig. 4C).
There was a negative correlation between distractor sup-
pression on regularity-present blocks (measured as the dif-
ference in low- vs. high-probability distractor color RTs)
and target array suppression on regularity-absent blocks
(measured as the difference in RT when the target was the
previously low- vs. high-probability distractor color; r =
−.41, p = .045), indicating that participants who suppressed
the distractor when regularities were present (resulting in a
faster target discrimination response) tended to respond
slower to the target array when it was presented in the
high-probability color. The negative correlation is expected

Fig. 3 Experiment 2: High-probability distractor color is suppressed dur-
ing learning and over an extended interval.AMean RT for each block on
trials with correct orientation reports. Dashed line indicates when
distractor color regularities were removed from the display. B Mean RT
across regularity-present and regularity-absent blocks for both high- and
low-probability color conditions. Individual subject data points shown.

Significant differences between color probability conditions indicated
with * for p values < .05.CCorrelation between suppression effect during
regularity-present blocks and regularity-absent blocks. Suppression ef-
fects were computed as the difference in RT between the low- and
high-probability distractor color conditions. Error bars are within-
subject standard error of the mean. (Color figure online)
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since continued suppression of previously high-probability
color should lead to worse performance when that color was
present in the target array, even though the same suppres-
sion was helpful during the regularity-present blocks.

Overall, results from Experiment 2 showed that color
suppression can occur independent of attenuation of specif-
ic spatial locations, replicating our main finding from
Experiment 1. Additionally, suppression persisted even
when stimulus regularities were no longer present, such that
responses were slower when the target array was presented

in the suppressed high-probability distractor color than
when the target array was presented in a low-probability
distractor color.

Intertrial priming: Analysis of aggregate data across experi-
ments As a final test of whether the nonspatial color suppres-
sion we observed was due to statistical learning (regularities
learned throughout the experiment) or to intertrial priming
(transient influence of previous trials), we computed the mean

Fig. 4 Learned distractor color is suppressed when used as target color
after regularities are removed. A Mean RT for each regularity-absent
block on trials where the target array was presented in the high- and
low-probability color(s). B Mean RT across regularity-absent blocks for
both the high- and low-probability color conditions. Individual subject
data points shown. Significant differences between color probability con-
ditions indicated with * for p values < .05. C Correlation between

suppression effect during regularity-present blocks and regularity-absent
blocks. Suppression effect for regularity-present blocks was computed as
the difference in RT between the high- and low-probability distractor
color conditions. Suppression effect for regularity-absent blocks was
computed using high- and low-probability target color conditions. Error
bars are within-subject standard error of the mean. (Color figure online)
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RT of each condition using only “switch” trials, or trials where
the distractor probability was different from the distractor
probability on the previous trial. We compared switch trials
to “repeat” trials, where the distractor probability was the
same as the distractor probability from the previous trial.
This analysis allowed us to assess the individual contribution
of priming, which is expected to result in a stronger effect on
repeat than switch trials, and perseverant learning, which
should still be present in switch trials. In addition to analyzing
data after sorting each trial (n) based on the switch/repeat
status of the previous trial (n − 1), we also looked at trials
farther back in the experiment where the distractor probability
matched/mismatched the current trial distractor probability in
a serial manner (n − k). We sorted each trial (n) based on the
trial label 1–8 trials previous (k = 1:8), because previous re-
search has shown that priming no longer impacts RT after
approximately seven trials (Maljkovic & Nakayama, 1994).
Since this removes a large proportion of trials, and because
Blocks 1 through 12 were identical in both experiments, we
collapsed across data from both experiments to ensure ade-
quate power (total n = 48).

Figure 5A shows a significant three-way interaction be-
tween distractor probability (high- and low-probability),
priming (switch and repeat), and serial position (n − 1
through n − 8), F(7, 329) = 3.88, p < .001, η2p = 0.08. This

demonstrates that distractor suppression was modulated by
priming, but that this effect changed as a function of how far
back in the trial sequence a repeat occurred. To better visualize
the influence of priming at each serial position, we computed a
priming distractor suppression value by first finding the dif-
ference in RT between the high- and low-probability distractor
color conditions independently for switch and repeat trials,
then computing the difference between these values. Positive
values of this measure indicate greater distractor suppression
on repeat trials (Fig. 5B).1

Priming indeed had a diminishing effect on RT the farther
back a repeat occurred in the trial sequence, with most influ-
ence absent after n − 5. Importantly, when comparing the
high- and low-probability distractor color conditions using
only n − 1 switch trials (where intertrial priming had the
strongest influence; Fig 5B), RTs were still significantly faster
when the high-probability color was shown, t(47) = 2.25, p =
.029, dz = 0.32, BF10 = 1.54 (Fig. 5C). This is additional
evidence suggesting that feature suppression is due, at least
in part, to long-term learning of stimulus regularities.

General discussion

The current study was designed to understand whether a
distracting stimulus defined based on its color could be sup-
pressed independent of spatial location. If true, target discrim-
ination performance should be improved when a high-
probability distractor color is present at the same location of
a target stimulus as compared with when any low-probability
distractor color is presented. We tested this by showing par-
ticipants two overlapping line arrays, where they had to report
the orientation of the array with the most lines (Fig. 1A).
During regularity-present blocks, the distractor array was usu-
ally presented in one color. Over the course of both experi-
ments, RTs were faster when this high-probability color was
present in the distractor array relative to one of the other low-
probability colors, indicating that the distractor color was sup-
pressed (Figs. 2B and 3B). Distractor suppression persisted
when color regularities were removed from the display for
subjects utilizing them during regularity-present blocks, indi-
cating that suppression cannot be fully explained by priming
(Figs. 2C and 3C). In Experiment 2, we found stronger evi-
dence in favor of long-term suppression: RTs were slower
when the target array was presented in the high-probability
color (Fig. 4), and this suppression persists when we only
analyzed switch trials during regularity-present blocks (Fig. 5).

Our findings build on the growing literature demonstrating
feature suppression through repeated exposure to regularly
presented visual search singletons (Failing et al., 2019;
Gaspelin & Luck, 2018; Stilwell & Gaspelin, 2021; Stilwell
et al., 2019; Vatterott & Vecera, 2012). Importantly, the ef-
fects in the present study were identified when spatial suppres-
sion mechanisms could not be used to lower the prioritization
of distracting items. In all of the aforementioned studies, vi-
sual search tasks were employed, which have been useful in
identifying when particular display statistics are used to guide
search behavior (Stilwell et al., 2019) as well as how regular-
ities may interact within and between feature dimensions to
modulate suppression (Failing et al., 2019). However, to fur-
ther understand how these regularities are deployed, it is im-
portant to understand each one in isolation. Our stimulus, in
which only color regularities could contribute to guiding sup-
pression, could be a useful tool for future studies to isolate
feature-specific suppression mechanisms from their spatial
counterparts.

Potentially contrasting with findings of feature-specific
suppression are studies indicating that only stimulus locations
can be deprioritized (Moher & Egeth, 2012; Theeuwes, 2010).
For example, Moher and Egeth (2012) had participants per-
form a target detection task where a cue was given at the start
of each trial. This cue was informative about the color of
distractors in an upcoming multi-item display, where each
item occupied a unique location. Target detection was faster
when an informative distractor cue was provided as compared

1 Our analysis is unable to completely exclude priming as a contributing fac-
tor, as we did not account for repeat trials between or after the analyzed trials
(e.g., Trials 1 through 7 when analyzing n − 8). This is because trials with no
repeats between/after trial n were exceedingly rare, making it difficult to inter-
pret results. However, our findings do clearly demonstrate that priming cannot
entirely account for learned color suppression.
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with a neutral cue, but this effect was only observed when the
distractor location was attended prior to the onset of a target.
This result led to their search-and-destroy hypothesis, which
states that a location needs to be selected first and then a
distractor presented in a learned feature can be suppressed.
Further evidence suggesting that suppression is location-
dependent comes from their Experiment 4, as suppression
was not improved when there were several distractors of the
same color, inconsistent with accounts of feature-based atten-
tion in which a specific feature value can be up/down-
regulated across the entire screen simultaneously (Maunsell
& Treue, 2006; Treue & Trujillo, 1999).

There are two noteworthy differences between our study
and Moher and Egeth (2012). First, as mentioned previously,
the spatially overlapping stimulus used in the current study
discouraged the use of any spatial suppression mechanisms,
as it would not have benefited target detection. Second,Moher
and Egeth (2012) used cues to direct volitional control to-
wards suppressing task-irrelevant information. In our study,
subjects were unaware of the display statistics, yet their per-
formancewas modulated by the presence of a high-probability
color. It appears that top-down control cannot be used to sup-
press distracting information in a parallel feature-based man-
ner, but implicit mechanisms allow for a more global

Fig. 5 Suppression is not entirely explained by intertrial priming. A
Mean RT was computed for the distractor array high-probability and
low-probability conditions on trials where the previous trial used a differ-
ent, or the same, distractor probability than that presented on the analyzed
trial (“switch” and “repeat” trials, respectively). We performed this ana-
lysis serially, sorting by switch/repeat based on Trials 1–8 prior to the
current trial. B Difference between “switch” and “repeat” trial suppres-
sion effects. Suppression was computed independently for switch/repeat
trials as the difference between high- and low-probability distractor color

conditions. Then, the difference between switch and repeat suppression
effects were plotted, where positive values indicate greater suppression on
repeat trials. * indicates significant difference, p < .05, one-sample t test.
C Mean RT for the distractor array high- and low-probability color con-
ditions for “switch” and “repeat” trials on n − 1 trials. * indicates signif-
icant difference, p < .05, paired t test. Data from both experiments were
used to ensure enough power to detect an effect. Error bars are within-
subject standard error of the mean. (Color figure online)
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suppression. While this may be the case, a potential down-
side to implicit learning is that suppression persists even
when it is no longer useful, as was evident in our
Experiment 2 (Fig. 4B–C), whereas top-control can be im-
plemented on a trial-by-trial basis (Cunningham & Egeth,
2016). Overall, our results provide strong evidence that
feature-specific suppression obtained through statistical learn-
ing can occur independent of top-down spatial suppression
operations such as reactive control (Theeuwes, 2010) or
search-and-destroy processes (Moher & Egeth, 2012).

While we ruled out reactive spatial mechanisms as a pos-
sible alternative to learned feature suppression, the current
findings are unable to address whether suppression exclusive-
ly occurred proactively or reactively. It could be the case that
the distractor array is less likely to be selected when presented
in the high-probability color (Gaspelin et al., 2019), or the
distractor array is still selected but the high-probability color
is rapidly suppressed through reactive feature suppression.
Without explicit knowledge of the color regularities, both
line arrays need to be attended to determine which is the
target. Thus, we speculate that reactive mechanisms were
deployed when attending our stimuli. However, it is plau-
sible, especially during regularity-present blocks, that a
proactive mechanism was also used as participants implic-
itly learned the high-probability color. Ultimately, both
strategies can be implemented (Geng, 2014). For instance,
it is often more efficient to proactively ignore distracting
stimuli but, since these regularities may not persist—as is
the case in our regularity-absent blocks—it can be benefi-
cial to allow for learned distractors to occasionally capture
attention to update learned regularities. This is even more
effective with a reactive mechanism to quickly disengage
from stimuli as long as they are still distracting.

How do our results fit with prioritymap theory?Within this
framework, maps corresponding to individual feature dimen-
sions are integrated into a feature-agnostic priority map (Itti &
Koch, 2001; Wolfe, 1994). Locations with the greatest prior-
itization are selected for the allocation of attention.
Mechanisms for distractor suppression generally fit nicely
within this model, as they explain how locations within these
maps are deprioritized (Failing et al., 2019; Luck et al., 2020).
Whenever feature-specific suppression is engaged, modula-
tions are thought to occur within the corresponding feature
map. For example, a regularly presented red singleton will
have lower activation in the red feature map, which results
in lower activation in the summed priority map. It is difficult
to reconcile our results exactly within this structure, as sup-
pressing the distractor location would also deprioritize the
target item due to their shared location. Rather than specific
locations being the target of prioritization, others have pro-
posed that modulation can occur at the level of individual
objects (Shomstein, 2012; Shomstein & Yantis, 2002), even
when they are occluded (Moore et al., 1998). According to

this account, after directing spatial attention, goal-relevant ob-
jects at that location are selected before other less-relevant
objects. This mechanism of object-based attention is compat-
ible with the spatially overlapping stimuli used in the current
study. When considered within the context of feature maps, in
addition to the high-probability color being suppressed, the
orientation of the lines associated with the high-probability
color would be suppressed allowing for the other object in
the display to be selected first. Future work can manipulate
the statistics in this paradigm to tease apart when objects,
features, and/or locations are suppressed.

Rather than a suppressive reweighting of objects within the
priority map framework, it could be the case that distractor
statistics are used to shift or enhance the representation of the
three possible target colors. Recent evidence shows that when
distractors are regularly presented in colors that are linearly
separable from the target color in feature space, the represen-
tation of a target color shifts away from the color of distractors
(Navalpakkam & Itti, 2007; Witkowski & Geng, 2019; Yu &
Geng, 2019). By shifting the target representation, it makes it
harder for distractors with a similar color as the target to cap-
ture attention (Duncan & Humphreys, 1989). In the current
study, it is possible that the representation of each target color
was shifted away from the learned distractor color to improve
performance. However, there are a couple of aspects of our
design that are difficult to reconcile with this account. First,
the high-probability color was only the most likely distractor
color—the other three colors were the distractor on some trials.
Yu & Geng (2019) showed that when distractor colors were
sampled from either side of feature space, the target color rep-
resentation no longer shifted. Second, these previous studies
have primarily investigated how distractor statistics influence
target representations, but there has yet to be a study showing
how implicitly learned distractor information is modulated in
similar visual search paradigms, so it is unclear whether both
targets and distractors are influenced. Regardless, this remains
an interestingmechanism and further studies should investigate
the degree of influence distractor statistics have on both targets
and distractors.

In both experiments, there was evidence that learned
distractor suppression may be a variable characteristic across
individuals since suppression effects persisted in regularity-
absent blocks for participants who showed an effect during
regularity-present blocks (Figs. 2C, 3C and 4C). This may not
come as a surprise, as similar findings are apparent in the
working memory literature (Luria et al., 2016). As an exam-
ple, individuals who perform well on memory tasks tend to be
better at ignoring distracting information (Vogel et al., 2005).
While speculative, it is possible that the ability to leverage
distractor statistics to prioritize target information is related
to the ability to prevent distracting information from entering
visual working memory. In fact, the distractors used in the
primary experiment of Vogel et al. (2005) were always
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red—a feature regularity that could be used in a manner con-
sistent with learned suppression. This is further supported by
the strong relationship between visual working memory and
attention (Awh & Jonides, 2001; Bahle et al., 2018; Olivers
et al., 2006). However, additional studies are needed to direct-
ly test whether distractor suppression observed in studies of
selection history is related to the ability to prevent irrelevant
information from entering working memory.

Conclusion

It is imperative to suppress distracting information for effec-
tive selection of relevant stimuli in service of goal-oriented
behavior. Mounting evidence has shown that locations corre-
sponding to a distractor can be suppressed (Gaspelin et al.,
2015; Stilwell et al., 2019; Wang & Theeuwes, 2018), but it
is important to understand whether nonspatial features can be
inhibited when space-based suppression is not beneficial. Our
study showed that when overlapping stimuli are presented, a
high-probability distracting color is suppressed to improve
target discrimination performance. This suppression persisted
even when regularities were removed from the display, indi-
cating that learned statistics contributed to this effect. Overall,
we provide strong evidence that features can be suppressed
independent of spatial location.
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