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1 	 | 	 INTRODUCTION

The	 cardiovascular	 system	 adapts	 quickly	 and	 dy-
namically	 in	 anticipation	 of	 and	 in	 response	 to	 a	 vari-
ety	 of	 mental	 and	 physical	 conditions.	 Tracking	 these	

perturbations	by	a	measurement	with	high	temporal	reso-
lution	is	a	promising	approach	for	identifying	physiologi-
cal	responses	to	psychological	drivers	such	as	motivation,	
challenge,	 coping	 or	 stress	 as	 well	 as	 physical	 demands	
(Blascovich, 2013;	Cieslak	et	al., 2018;	Obrist, 1981;	Richter	
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Abstract
We	describe	methods	and	software	resources	for	a	bioimpedance	measurement	
technique,	 ‘trans-	radial	 electrical	 bioimpedance	 velocimetry’	 (TREV)	 that	 al-
lows	for	the	non-	invasive	monitoring	of	relative	cardiac	contractility	and	stroke	
volume.	After	reviewing	the	relationship	between	the	measurement	and	cardiac	
contractility,	we	describe	the	general	recording	methodology,	which	requires	im-
pedance	measurements	of	 the	 forearm.	We	provide	open-	source	 Jupyter-	based	
software	(operable	on	most	computers)	for	deriving	cardiac	contractility	from	the	
impedance	 measurements.	 The	 software	 includes	 tools	 for	 removing	 variance	
associated	 with	 heart	 rate	 and	 respiration.	 We	 demonstrate	 the	 ability	 of	 this	
bioimpedance	 measurement	 for	 tracking	 beat-	to-	beat	 changes	 of	 contractility	
in	a	maximal	grip	force	production	task.	Critically,	the	results	demonstrate	both	
a	reactive	increase	in	contractility	with	force	production,	and	suggest	there	is	a	
learned	increase	in	contractility	prior	to	grip	onset,	consistent	with	anticipatory	
allostatic	autonomic	regulation	mediated	by	sympathetic	inotropy.	The	method	
and	software	should	be	of	broad	utility	for	investigations	of	event-	related	cardiac	
dynamics	in	psychophysical	studies.
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&	 Gendolla,  2009).	 Bioimpedance	 methods,	 particularly	
impedance	 cardiography	 (ICG),	 have	 long	 been	 used	 to	
investigate	modulation	of	the	autonomic	nervous	system	
to	 the	 heart	 by	 capturing	 electromechanical	 modulation	
of	 cardiovascular	 activity	 during	 cognitive	 tasks	 (Miller	
&	 Horvath,  1978).	 ICG	 uses	 a	 high-	frequency	 electrical	
current	typically	delivered	with	as	few	as	four	electrodes	
placed	on	the	neck	and	thorax,	while	additional	electrodes	
are	 required	 to	 record	 the	 electrocardigram.	 Using	 the	
combination	 of	 impedance	 cardiography	 and	 electrocar-
diography,	a	number	of	cardiodynamic	parameters	can	be	
derived.	 These	 include	 intervallic	 electromechanical	 pa-
rameters	such	as	the	pre-	ejection	period	(PEP)	as	well	as	
estimates	of	 left	ventricular	ejection	time	(LVET),	stroke	
volume	(SV)	and	cardiac	output	(CO)	based	on	idealized	
models	of	the	thorax	(Bernstein, 2009;	Trakic	et	al., 2010).

While	 ICG	 is	 a	 powerful	 approach,	 the	 method	 has	
drawbacks.	 There	 are	 diverse	 physiologic	 and	 anatomic	
sources	that	influence	changes	in	thoracic	impedance,	un-
dermining	the	ability	to	estimate	peak	aortic	blood	flow,	
an	 indicator	 of	 contractility	 (Wang	 &	 Patterson,  1995).	
Because	 the	 measurements	 are	 acquired	 across	 the	 tho-
rax,	 the	 normal	 respiratory	 cycle	 introduces	 additional	
confounds	due	to	changes	of	thoracic	size	and	shape	that	
undermine	the	application	of	ideal	models.	Pragmatically,	
operational	 challenges	 related	 to	 applying	 electrodes	 to	
the	 naked	 torso	 pose	 additional	 limitations.	 More	 prob-
lematic	has	been	the	modelling	of	the	resultant	thoracic	
impedance	waveform.	The	analysis	depends	on	the	iden-
tification	of	the	b-	point,	a	subtle	inflection	of	the	thoracic	
impedance	 wave	 corresponding	 to	 the	 opening	 of	 the	
aortic	valve.	Despite	the	development	and	distribution	of	
semi-	automated	software	tools	by	our	laboratory	for	expe-
diting	the	labelling	of	the	b-	point,	we	find	that	for	many	
studies	b-	point	identification	continues	to	require	exten-
sive	hands-	on	expert	quality	control	 for	 labelling	ambig-
uous	 time	 points.	 While	 the	 variability	 in	 labelling	 the	
b-	point	 can	 be	 overcome	 by	 averaging	 heartbeats	 over	 a	
sliding	time	window,	this	compromises	the	goal	of	mea-
suring	alterations	of	PEP,	LVET	or	SV	on	a	fast	time	scale	
(Cieslak	et	al., 2018).

Given	 the	 challenges	 that	 ICG	 analysis	 presents	 for	
the	 estimation	 of	 cardiac	 contractility,	 we	 have	 inves-
tigated	 other	 bioimpedance	 measurement	 techniques.	
Here	we	present	a	particularly	promising	method	called	
trans-	radial	electrical	bioimpedance	velocimetry	 (TREV)	
(Bernstein	et	al., 2012).	TREV	is	a	user-	friendly	approach	
that	measures	impedance	signals	along	the	length	of	the	
volar	 forearm.	 Changes	 of	 the	 impedance	 signal	 are	 di-
rectly	related	to	a	pressure/pulse	wave	propagating	along	
the	radial	and	ulnar	arteries	that	arises	after	the	opening	
of	 the	 aortic	 valve.	 In	 the	 following	 sections,	 we	 review	
the	factors	that	influence	contractility,	and	then	describe	

the	underlying	biomechanical	and	electrical	properties	of	
TREV	that	lead	to	the	estimation	of	cardiac	contractility.	
We	note	that	while	others	have	measured	bioimpedance	
in	the	periphery,	specifically	in	the	leg,	their	experimental	
goal	was	to	estimate	blood	velocity	and	peripheral	vascu-
lar	compliance	through	simultaneous	acquisition	of	tho-
racic	bioimpedance	(Sel	et	al., 2021).	A	key	innovation	of	
TREV	is	to	derive	the	peak	acceleration	of	the	impedance	
wave,	which	directly	relates	to	peak	aortic	pulse	pressure	
and	hence,	end	systolic	intraventricular	pressure,	a	proxy	
of	contractility.	We	demonstrate	the	utility	of	TREV	with	
an	isometric	grip	force	task	to	capitalize	on	the	known	in-
crease	 in	contractility	while	humans	apply	a	brief	maxi-
mum	force	to	a	grip	transducer	(Stanek	&	Richter, 2016;	
Stanek	 &	 Richter,  2021).	 From	 this,	 we	 present	 prelimi-
nary	evidence	that	TREV	is	capable	of	capturing	beat-	by-	
beat	 allostatic	 anticipatory	 changes	 in	 contractility.	 The	
observed	 contractility	 changes	 are	 independent	 of	 heart	
rate	increases	and	cyclic	respiration,	suggesting	that	par-
ticipants	can	learn	to	develop	increased	sympathetic	drive	
to	the	heart	prior	to	hand	grip	onset.	Finally,	we	provide	
an	appendix	describing	signal	processing	software,	amal-
gamating	multiple	python	packages	(Gramfort	et	al.,	2013;	
Hunter,	2007;	Vack,	2023;	Virtanen	et	al.,	2020),	and	oper-
able	 on	 most	 computers,	 and	 a	 tutorial	 for	 streamlining	
the	 conversion	 of	 TREV	 impedance	 measurements	 into	
beat-	by-	beat	estimates	of	contractility.

1.1	 |	 Background physics and physiology

1.1.1	 |	 Red	blood	cells	and	impedance

Several	biophysical	properties	contribute	to	the	changes	of	
electrical	 impedance	measured	with	TREV.	Under	static	
conditions	(without	blood	flow	or	arterial	pressure	gradi-
ents	but	with	constant	blood	volume	and	constant	alveo-
lar	gas	partial	pressure),	the	red	blood	cells,	constituting	
approximately	 40%	 of	 blood	 volume	 in	 a	 vessel,	 will	 be	
randomly	oriented.	Due	to	the	random	orientation	of	the	
biconcave	red	blood	cells,	an	increased	resistance	within	
the	plasma	is	observed	and	the	artery	exhibits	a	maximal	
level	 of	 electrical	 resistivity	 measurable	 as	 impedance	 Z	
in	units	of	Ohms	(Ω)	(Bernstein, 2009).	In	contrast,	when	
blood	 flow	 traverses	 the	 radial	 and	 ulnar	 arteries,	 the	
short	axis	of	red	blood	cells	aligns	perpendicularly	to	the	
flow	axis,	leading	to	a	decrease	in	impedance	(Figure 1).	
This	 impedance	 signal	 Z	 depends	 on	 both	 blood	 veloc-
ity	(v)	and	blood	volume.	If	these	are	held	constant	(as	in	
physics),	then	measured	impedance	Z	remains	in	units	of	
Ω.	Yet,	because	each	heartbeat	causes	blood	to	flow	and	
experiences	a	pressure	wave	the	measured	 impedance	Z	
becomes	a	dynamic,	as	opposed	to	a	static	(as	in	physics)	
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measure.	Therefore,	it	is	appropriate	to	report	Z	in	physi-
ology	 studies	 in	 units	 of	Ω/s	 (Bernstein	 et	 al.,  2012).	 As	
shown	 in	Figure 1	 there	 is	a	potential	 for	blood	volume	
to	 increase	 with	 each	 heartbeat.	 While	 this	 clearly	 oc-
curs	in	the	proximal	aorta	(the	windkessel	phenomenon),	
ultrasound-	measured	 pulsatile	 changes	 of	 blood	 volume	
in	the	upper	arm	and	forearm	vasculature	are	negligible	
(Chuang	et	al., 2002;	Green	et	al., 2002;	Lott	et	al., 2002).

1.1.2	 |	 Peak	acceleration	of	
blood	and	impedance

During	 diastole	 of	 the	 cardiac	 cycle,	 the	 aortic	 valve	 is	
closed,	isolating	aortic	blood	pressure	from	intraventricu-
lar	pressure	as	blood	fills	 the	ventricle,	boosted	by	atrial	
contraction.	 With	 systole,	 the	 ventricular	 myocardium	
contracts,	the	mitral	valve	closes	and	isovolumic	intraven-
tricular	 pressure	 rapidly	 rises	 until	 pressure	 in	 the	 ven-
tricle	surpasses	aortic	pressure,	at	which	point	the	aortic	
valve	opens.	A	pressure	surge	is	transmitted	into	the	aorta	
leading	to	a	rapid	rise	in	proximal	arterial	blood	velocity.	
Distally,	the	pulse	pressure	in	the	radial	artery	is	approxi-
mately	 1/3	 of	 the	 peak	 pressure	 generated	 by	 the	 heart.	
Continuous	 flow	 is	dependent	on	 the	compliance	of	 the	
proximal	 aorta	 which	 expands	 and	 then	 contracts	 dur-
ing	systole	(windkessel).	Mean	velocity	is	affected	by	the	
downstream	tapering	of	the	peripheral	arteries,	where	the	
pulse	pressure	encounters	reduction	in	vessel	compliance	
and	 time	varying	 increased	elastance	ΔP/ΔV,	which	are	
caused	by	progressive	vessel	 thickening	and	reduced	 lu-
minal	radius,	reduced	cross-	sectional	area	and	reduced	in-
traluminal	volume.	Thus,	caution	is	advised	in	comparing	

individual	 differences	 of	 pulse	 pressure	 height	 or	 blood	
velocity	between	participants,	who	may	differ	in	vascular	
integrity	due	to	age	or	disease.

Cardiac	contractility,	or	the	vigour	with	which	the	heart	
contracts,	is	determined	by	the	magnitude	of	intraventric-
ular	 pressure	 that	 is	 generated	 during	 systole	 and	 hence	
arterial	 blood	 acceleration.	 Multiple	 factors	 in	 turn	 can	
potentially	influence	contractility.	In	ex vivo	experimental	
preparations,	abrupt	increases	in	afterload,	that	is,	the	pres-
sure	that	the	heart	must	work	against	to	eject	blood,	can	
cause	a	 small	 increase	 in	contractility	 (the	Anrep	effect).	
Under	normal	conditions	blood	pressure	is	the	primary	de-
terminant	of	afterload	and	its	impact	on	cardiac	function	
is	 to	 reduce	 stroke	 volume	 and	 not	 contractility	 (Mahler	
et	al., 1975).	Likewise,	under	normal	conditions	changes	of	
peripheral	vascular	resistance	influence	blood	pressure	and	
stroke	volume	but	do	not	influence	contractility	(Chemla	
et	al., 1996).	Preload,	which	is	the	amount	of	stretch	experi-
enced	by	cardiac	muscle	cells	at	the	end	of	diastole,	will	in-
crease	contractility	due	to	the	length–	tension	relationship	
of	muscle	(Frank–	Starling	mechanism).	Ventricular	filling	
in	 turn	 is	 dependent	 on	 venous	 blood	 pressure	 and	 the	
rate	of	venous	return.	For	typical	psychophysiology	experi-
ments	in	healthy	participants	obtained	during	physical	in-
activity,	the	primary	modifier	of	preload	is	respiration	due	
to	cyclic	changes	of	intrathoracic	pressure	and	the	volume	
of	venous	return	during	diastole.	Respiration	is	also	asso-
ciated	with	low-	frequency	variation	of	heartrate	(Angelone	
&	 Coulter	 Jr.,  1964)	 mediated	 primarily	 via	 vagal	 tone	
(Borovkova	et	al., 2022).	A	premature	ventricular	contrac-
tion	(PVC)	can	lead	to	a	significant	reduction	of	preload.	
In	the	provided	software,	these	beats	can	be	identified	and	
manually	removed.	Increased	heart	rate	causes	an	increase	

F I G U R E  1  Alterations	in	red	blood	
cell	orientation	and	impedance	during	
pulsatile	blood	flow	through	the	artery	of	
the	forearm.	During	systole,	the	pressure	
wave	both	dilates	the	blood	vessel	and	
rapidly	aligns	red	blood	cells,	resulting	
in	decreased	impedance.	Adapted	from	
Bernstein (2009).
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in	contractility	(the	Bowditch	effect)	(Balcazar	et	al., 2018;	
Richmond	et	al., 1975).	In	a	physically	inactive	person	this	
is	due	mainly	to	reduced	parasympathetic	drive.	The	other	
main	determinant	of	 increased	contractility	(inotropy)	as	
well	 as	 accelerating	 heart	 rate	 (chronotropy)	 is	 elevated	
sympathetic	drive	to	the	heart.	Thus,	measures	to	account	
for	sympathetic	effects	of	heart	rate	could	potentially	co-
vary	 with	 effects	 on	 contractility.	 However,	 sympathetic	
chronotropy	is	a	weak	effect	for	a	person	at	physical	rest.	
To	summarize,	after	adjusting	for	changes	of	heart	rate	and	
respiration	and	removing	PVCs,	measured	contractility	is	
a	particularly	useful	variable	of	interest	for	tracking	what	
is	primarily	sympathetic	drive	to	the	heart	in	psychophys-
iological	studies	of	healthy	non-	medicated,	physically	sta-
tionary	participants.

1.1.3	 |	 Modelling	the	impedance	signal

In	 the	 arm,	 peak	 blood	 velocity	 occurs	 approximately	
100	ms	 and	 peak	 acceleration	 occurs	 50	ms	 after	 aortic	
valve	opening.	In	the	following	and	Table 1,	we	summa-
rize	 the	 relationship	between	 flow,	TREV	measures	and	
impedance	 derivatives	 (for	 details	 see	 Bernstein,  2009).	
With	 TREV,	 impedance	 Z	 is	 proportional	 to	 blood	 flow	
velocity.	To	estimate	the	magnitude	of	contractility	with	
TREV,	we	first	take	the	derivative	of	velocity	dZ/dt	meas-
ured	in	units	of	Ω/s2.	Note	that	dZ/dt	reaches	a	maximum	
around	50–	60	ms,	in	close	correspondence	to	the	peak	ac-
celeration	 of	 measured	 flow	 after	 aortic	 valve	 opening.	
The	magnitude	of	this	peak	can	be	estimated	by	taking	the	
derivative	of	acceleration	 (in	engineering,	 this	 is	known	
as	‘jerk’),	(d2Z/dt2),	in	Ω/s3.	This	value	is	proportional	to	
the	strength	at	which	the	acceleration	is	generated,	which	
occurs	soon	after	the	aortic	valve	opens,	and	reflects	the	
contractility-	dependent	maximal	end	systolic	 isovolumic	
ventricular	pressure.	Critically,	the	derivative	of	accelera-
tion	is	insensitive	to	afterload	effects	such	as	blood	pres-
sure	whereas	flow	velocity	is	sensitive	to	afterload	effects.	
As	noted	above,	the	magnitude	of	d2Z/dt2	will	vary	with	

heart	 rate	 and	 respiration,	 which	 can	 be	 measured	 and	
accounted	 for	 by	 modelling.	 In	 addition	 to	 contractility,	
stroke	 volume	 can	 also	 be	 calculated	 by	 integrating	 the	
normalized	 complete	 acceleration	 curve.	 This	 estimate	
depends	 on	 systolic	 flow	 time	 and	 velocity	 and	 is	 thus	
sensitive	to	afterload	(blood	pressure).	A	previous	valida-
tion	study	demonstrated	good	correlation	between	cardiac	
MRI	 stroke	 volume	 and	 an	 impedance	 measured	 along	
the	brachial	artery	of	the	arm	(Bernstein	et	al., 2015).

The	 key	 advantage	 of	 TREV	 for	 estimating	 contrac-
tility	is	that	the	measure	is	based	on	blood	flow	through	
the	 linear	 axially	 oriented	 segments	 of	 the	 radial	 (and	
ulnar)	 artery.	 Contrast	 this	 simple	 arterial	 geometry	
with	the	multi-	oriented	flow	directions	in	the	heart,	aor-
tic	 arch	 and	 heavily	 branching	 thoracic	 vasculature	 that	
underlie	ICG	measurements	(Trakic	et	al., 2010;	Wang	&	
Patterson, 1995).	The	complex	arterial	geometry	within	the	
thorax	limits	the	ability	to	use	d2Z/dt2	of	the	ICG	signal	as	
a	reliable	estimator	of	proximal	aorta	blood	acceleration	
and	 hence	 contractility	 (Kauppinen	 et	 al.,  1998;	 Kosicki	
et	al., 1986).	Instead,	the	most	commonly	employed	ICG	
estimate	of	contractility	is	PEP,	an	electromechanical	time	
interval	 measure	 dependent	 on	 the	 temporal	 precision	
of	estimating	the	b-	point.	TREV	estimates	are	generated	
without	this	difficult	temporal	estimation.	Because	of	the	
sharpness	of	the	dZ/dt	and	d2Z/dt2	waveforms,	it	is	possi-
ble	to	estimate	directly	heart	rate	from	the	TREV	signal,	
obviating	the	need	for	an	 independent	measure	of	heart	
rate	 by	 EKG.	 This	 capability	 is	 included	 in	 the	 Jupyter	
software	described	in	the	accompanying	Appendix S1.	To	
account	for	the	influence	of	respiration	and	heart	rate	on	
contractility,	the	methodology	presented	below	used	a	re-
spiratory	belt	and	EKG.	These	independent	timeseries	can	
be	fed	into	our	software	for	modelling	out	respiration	or	
heart	 rate	effects.	Alternatively,	we	added	 to	 the	Jupyter	
software	 the	 capability	 of	 deriving	 the	 respiratory	 cycle	
and	 heart	 rate	 directly	 from	 Z	 waveforms,	 obviating	 the	
need	for	 independent	measurements.	As	with	other	bio-
impedance	measurements	recorded	through	surface	elec-
trodes,	TREV	is	exceptionally	sensitive	to	motion	artefact	
of	 the	 arm.	 The	 quality	 of	 the	 recordings	 will	 vary	 as	 a	
function	of	skin	turgor	and	the	quality	of	the	electrodes.	
Impedance	Z	depends	on	the	distance	between	electrode	
pairs.	 While	 the	 distance	 can	 be	 adjusted	 to	 maximize	
signal-	to-	noise	in	an	individual,	it	should	be	standardized	
within	an	individual	for	repeated-	measures	experiments.	
The	system	described	below,	with	the	addition	of	appro-
priate	 patch	 panel	 filters,	 is	 fMRI-	compatible	 and	 scans	
can	 be	 obtained	 in	 axial	 or	 coronal	 sections.	 Additional	
information	on	the	mathematical	derivation	of	contractil-
ity,	the	effect	of	arterial	compliance	and	extension	to	es-
timations	of	stroke	volume	are	available	as	a	supplement	
that	 accompanies	 the	 Jupyter	 software	 described	 in	 the	

T A B L E  1 	 Relationship	between	arterial	blood	flow,	impedance	
and	units.

Axial blood flow

Impedance 
along the 
radial 
arterya Units Comments

None Z Ω Time	invariant

Velocity Z Ω/s Time	varying

Acceleration dZ/dt Ω/s2

Peak	acceleration d2Z/dt2 Ω/s3 Contractility
aAssumes	no	change	in	blood	volume	or	arterial	gas	concentration.

 14698986, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/psyp.14411 by U

niversity O
f C

alifornia, Santa B
arbara, W

iley O
nline L

ibrary on [26/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



   | 5 of 13STUMP et al.

Appendix  S1,	 and	 available	 at	 https://github.com/caitg	
regor	y/SCOT.

1.2	 |	 Changes of cardiac contractility 
with isometric force production

In	this	section,	we	demonstrate	changes	 in	TREV	meas-
ures	 of	 contractility	 (after	 adjusting	 for	 variation	 associ-
ated	with	heart	rate	and	respiration)	associated	with	the	
production	of	brief	isometric	force	of	maximum	hand	grip	
strength	obtained	for	either	hand.	Using	repeated	meas-
ures	of	short	duration	grips,	we	observed	evidence	suggest-
ing	there	is	the	development	of	an	anticipatory	change	in	
contractility	prior	to	grip	onset,	consistent	with	allostatic	
regulation	by	the	autonomic	nervous	system	(McEwen	&	
Wingfield, 2003).

2 	 | 	 METHOD

2.1	 |	 Participants and experimental 
overview

Thirty-	one	 young	 healthy	 humans	 (mean	 age	=	23.4,	
19	 females)	 provided	 informed	 consent	 in	 accordance	

with	the	University	of	California,	Santa	Barbara	(UCSB)	
Institutional	Review	Board.	Participants	self-	reported	no	
cardiovascular	 abnormalities.	 One	 participant	 was	 ex-
cluded	due	to	excessively	noisy	data,	leaving	a	final	sam-
ple	of	n	=	30.	Participants	were	compensated	$10/h	plus	a	
potential	$10	bonus	depending	on	task	performance	(see	
Grip	task	below).

Participants	 performed	 two	 blocks	 of	 a	 2-	s	 duration	
maximum	 Grip	 task	 (see	 Grip	 task),	 each	 block	 corre-
sponding	to	three	sequential	grips	of	one	hand	and	then	
the	other	(with	hand	order	randomized	across	subjects).	
Three	 simultaneous	 physiological	 timeseries	 were	 re-
corded	during	each	block.	The	first	timeseries	was	time-	
varying	 cardiac	 impedance	 acquired	 with	 TREV	 where	
electrodes	 were	 attached	 to	 the	 forearm	 contralateral	
to	 the	 hand	 administering	 grips	 (Figure  2).	 The	 second	
timeseries	was	a	standard	electrocardiogram	(EKG).	The	
last	 timeseries	recorded	the	continuous	respiration	cycle	
with	an	abdominal	belt.

2.2	 |	 Recording apparatus

TREV	 colloid	 strip	 electrodes	 (BIOPAC	 EL526),	 each	
measuring	 1.5	×	16.5	cm	 and	 connected	 by	 a	 15	cm	 cable	
were	attached	to	the	forearm.	In	participants	with	smaller	

F I G U R E  2  Electrode	placement	of	trans-	radial	electrical	bioimpedance	velocimetry	system.	Four	electrodes	placed	on	the	forearm;	two	
outer	current	electrodes	(I+	and	I−)	and	two	inner	voltage	sensing	electrodes	(V+	and	V−).	I+	and	I−	create	an	alternating	current	field	(I)	
through	the	forearm,	and	any	changes	in	forearm	impedance	are	directly	correlated	with	changes	in	voltage	ΔV	between	V+	and	V−.
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wrist	sizes	the	distal	two	electrodes	on	the	forearm	can	be	
trimmed	so	that	they	do	not	wrap	over	themself	when	data	
are	obtained	during	MRI.	A	simple	skin	cleaning	proce-
dure,	without	use	of	an	abrasive	exfoliant	or	application	of	
a	salt	gel	was	used	(see	General	Procedure).	The	electrodes	
were	amplified	by	an	NICO100D	(BIOPAC	Systems,	Inc.)	
smart	amplifier.	A	current	field	is	applied	across	the	fore-
arm	 by	 means	 of	 a	 constant	 magnitude,	 high-	frequency	
(50–	100	kHz)	 low-	amplitude	 alternating	 current	 (4	mA	
RMS).	The	constant	current	(I)	is	introduced	through	the	
two	 outer	 electrodes	 (I+	 and	 I−)	 and	 the	 resulting	 volt-
age	(V)	is	measured	via	the	inner	electrodes	(V+	and	V−).	
Using	Ohm's	Law,	we	can	use	 the	voltage	differential	V	
and	applied	current	I	to	calculate	impedance	Z:

Here,	I	and	V	are	the	root	mean	square	values	of	 the	
known	current	and	measured	voltage.	Because	the	mag-
nitude	of	the	current	I	is	constant,	any	change	in	voltage	
V	 over	 time	 will	 vary	 in	 direct	 proportion	 to	 changes	 in	
impedance	Z.	This	method	allows	us	to	capture	moment-	
to-	moment	fluctuations	in	bioimpedance,	reported	as	Ω/s	
rather	than	Ω.

Electrocardiogram	 electrodes	 were	 amplified	 by	
an	 ECG100D	 (BIOPAC	 Systems,	 Inc.)	 smart	 amplifier.	
Respiration	 cycle	 was	 recorded	 using	 a	 TSD221-	MRI	
(BIOPAC	 Systems,	 Inc.)	 respiration	 belt.	 Force	 exerted	
in	 the	 Grip	 task	 was	 recorded	 using	 an	 SS56L	 (BIOPAC	
Systems,	 Inc.)	grip	bulb.	All	continuous	signals	were	 in-
tegrated	using	an	MP160	(BIOPAC	Systems,	Inc.)	ampli-
fier	and	processed	online	using	BIOPAC	AcqKnowledge	
software	 (BIOPAC	 Systems,	 Inc.).	 Visual	 stimuli	 were	
presented	on	a	21″	monitor	using	Microsoft	PowerPoint.	
Offline	 preprocessing	 of	 recorded	 timeseries	 was	 con-
ducted	 using	 the	 Moving	 Ensemble	 Analysis	 Pipeline	
(MEAP)	 and	 MATLAB	 (Cieslak	 et	 al.,  2018).	 Bayes	
models	 were	 fitted	 using	 No	 U-	Turn	 sampling	 (NUTS)	
Hamiltonian	 Monte	 Carlo,	 fitted	 with	 PyMC3	 Python3	
functions	(Salvatier	et	al., 2016).

2.3	 |	 General procedure

All	 data	 were	 recorded	 in	 a	 single	 session	 lasting	 ap-
proximately	 45	min	 (including	 initial	 equipment	 setup).	
Participants	 first	washed	 their	hands	and	 forearms	with	
water	 and	 regular	 soap	 to	 remove	 dirt	 or	 oily	 residues	
then	 pat	 dry.	 In	 a	 private	 setup	 room,	 an	 experimenter	
then	 placed	 four	 TREV	 electrodes	 on	 the	 forearm	 con-
tralateral	to	the	grip	hand	of	the	first	block	(see	Grip	task).	
Two	electrodes	were	placed	ventrally	on	the	distal	region	
of	the	forearm,	just	below	where	the	wrist	meets	the	hand.	

Then,	two	electrodes	were	placed	on	the	proximal	region	
of	 the	 forearm,	 just	 below	 where	 the	 elbow	 meets	 the	
forearm	(Figure 2).	Each	electrode	pair	was	spaced	1	cm	
apart.	TREV	electrodes	are	bioimpedance	strip	electrodes	
(BIOPAC	 EL526	 –		 size	 1.3		×	16.5	cm).	 These	 electrodes	
establish	 circumferential	 equipotential	 lines	 at	 the	 four	
electrode	locations.

The	 experimenter	 placed	 two	 EKG	 electrodes	 on	 the	
participant's	 chest:	 one	 below	 the	 right	 collarbone	 and	
one	where	the	deltoid	meets	the	chest	(without	any	skin	
cleaning).	 Participants	 were	 then	 brought	 to	 the	 testing	
room	where	the	experimenter	connected	electrodes	to	the	
associated	 amplifiers,	 applied	 a	 respiration	 belt	 around	
the	participant's	abdomen	and	directed	participants	to	sit	
at	 the	 testing	 table	 3	feet	 from	 a	 computer	 screen.	 Once	
seated,	participants	were	taught	how	to	properly	hold	and	
squeeze	the	grip	bulb,	with	the	tubing	facing	down	and	in	
a	manner	that	involved	the	whole	hand.	Participants	were	
also	instructed	to	maintain	the	same	posture	and	to	keep	
their	arms	 relaxed,	 still,	 and	 in	 the	 same	positioning	on	
the	table	throughout	the	entirety	of	the	experiment.

2.4	 |	 Grip task

Prior	 to	 collecting	 experimental	 data,	 participants	 were	
first	 instructed	 to	grip	 the	bulb	as	hard	as	possible	with	
each	 hand	 to	 obtain	 their	 maximal	 force.	 During	 these	
trials	 the	 participants'	 maximum	 forces	 were	 recorded	
and	used	as	(max	thresholds).	The	experimenter	then	ex-
plained	 the	 experimental	 protocol,	 which	 is	 depicted	 in	
Figure  3.	 The	 protocol	 consisted	 of	 two	 blocks	 of	 three	
trials,	 gripping	 with	 the	 opposite	 hand	 in	 each	 block	
(block-	hand	order	was	determined	with	uniform	(p	=	.50)	
probability	for	each	participant).	Prior	to	the	start	of	the	
first	 block	 of	 trials,	 participants	 were	 instructed	 to	 sit	
idly	for	3	min	to	acclimate	to	the	exam	room.	The	experi-
menter	then	quietly	entered	the	room	to	start	the	physi-
ological	recording	and	associated	computer	task.	Once	the	
experiment	started,	the	experimenter	departed	the	room.	
Trials	began	with	an	on-	screen	countdown	timer,	where	
participants	were	instructed	to	look	at	the	screen	during	
a	2-	min	rest	period.	At	 the	end	of	 the	 rest	period,	a	 ‘go’	
cue	would	appear,	signalling	to	the	participants	to	squeeze	
the	 bulb	 maximally	 for	 2	s.	 This	 short	 duration	 grip	 has	
previously	 been	 shown	 to	 minimally	 recruit	 peripheral	
vascular	autonomic	responses	(Lott	et	al., 2002).	The	gen-
erated	force	was	recorded	covertly	throughout	the	trial	to	
determine	off-	line	if	participants	had	achieved	their	prior	
max	 threshold.	 After	 the	 2	s	 passed,	 the	 countdown	 pe-
riod	of	the	next	trial's	rest	period	then	began.	This	cycle	
continued	for	two	more	grips.	At	the	end	of	the	third	trial	
on	each	block,	a	timer	counted	down	to	a	visual	stimulus	

Z(t) =
V (t)

I(t)
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that	 instructed	participants	 to	ring	a	bell	 to	alert	 the	ex-
perimenter	that	they	had	finished.	Each	of	the	three	trials	
was	therefore	preceded	and	followed	by	a	2-	min	rest.	To	
incentivize	participants	 to	grip	with	maximum	strength,	
we	 imposed	 a	 bonus	 system,	 whereby	 participants	 who	
reached	a	threshold	of	±0.04	kg/m2	of	their	hand-	specific	
max	thresholds	on	all	three	grips	would	win	a	$10	bonus.	
The	experimenter	disclosed	this	rule	to	participants	after	
recording	the	max	thresholds	and	did	not	inform	partici-
pants	if	they	had	achieved	the	bonus	until	after	all	testing	
was	 completed.	 After	 completing	 the	 first	 block,	 the	 ex-
perimenter	transferred	the	TREV	electrodes	to	the	other	
arm	 and	 the	 Grip	 task	 was	 repeated.	 Participants	 were	
provided	 with	 performance	 feedback	 after	 all	 trials	 had	
been	completed.

2.5	 |	 Cardiovascular preprocessing

During	recording,	the	AcqKnowledge	software	was	used	
to	 apply	 an	 online	 lowpass	 filter	 (max	 cutoff	=	20	Hz)	
to	 the	 raw	 impedance	 timeseries	 Z(t)	 recorded	 by	 the	
TREV	electrodes.	From	this	the	same	software	was	used	
to	generate	a	continuous	timeseries	dZ/dt	(acceleration)	
and	 d2Z/dt2	 (peak-	acceleration	=	contractility).	 The	 raw	
contractility	timeseries	was	then	imported	together	with	
the	 raw	 EKG	 and	 respiration	 timeseries	 to	 the	 MEAP	
software	for	minimal	offline	processing.	MEAP	first	au-
tomatically	 labelled	 the	R-	peaks	of	 the	EKG	timeseries,	
which	 we	 used	 as	 an	 index	 for	 the	 moment	 in	 time	 to	
define	each	individual	heartbeat.	We	next	used	these	R-	
peak	 time	 indices	 to	 extract	 epochs	 spanning	 ±350	ms	
around	 each	 heartbeat	 from	 the	 raw	 contractility	 time-
series	 (contractility	 epochs).	 MEAP	 also	 computed	 esti-
mates	of	heart	rate	at	each	beat	from	the	R-	peaks.	MEAP	

outputs	 were	 then	 transferred	 to	 MATLAB,	 where	 the	
maximum	 amplitude	 in	 each	 contractility	 epoch	 was	
computed	 as	 an	 estimation	 of	 each	 heartbeat's	 contrac-
tility	 (beat-	wise	 contractility	 timeseries).	 Then,	 sepa-
rately	 for	 each	 subject,	 and	 each	 block,	 we	 conducted	
an	additional	regression	procedure	(Dundon	et	al., 2020;	
Dundon	et	al., 2021)	to	remove	the	additional	confound-
ing	 effects	 of	 heart	 rate	 and	 respiration	 from	 the	 beat-	
wise	contractility	timeseries.	Using	a	multiple	regression	
model,	we	regressed	the	vector	beat-	wise	contractility	as	
a	 function	 of	 an	 intercept	 and	 three	 regressors:	 (i)	 the	
phase	of	respiration	at	each	heartbeat,	(ii)	the	amplitude	
of	 respiration	 at	 each	 heartbeat	 and	 (iii)	 the	 heart	 rate	
at	 each	 heartbeat.	 To	 down-	sample	 each	 regressor	 to	
beat-	wise	 estimates,	 we	 used	 the	 value	 from	 raw	 time-
series	closest	 to	 the	 time	of	each	R-	peak.	We	added	the	
estimated	 intercept	 to	 the	 residuals	 from	 this	 model	 as	
the	‘residualized’	contractility	timeseries,	that	is,	with	the	
effects	of	the	above	three	regressors	removed.	Given	both	
between-	subject	 and	 within-	subject	 variation	 in	 heart	
rate,	we	next	applied	temporal	resampling	of	each	block's	
residualized	timeseries	to	allow	meaningful	comparisons	
across	 participants.	 For	 this,	 we	 used	 one-	dimensional	
linear	 interpolation	across	 time	 to	 recreate	 residualized	
timeseries	 sampled	 at	 equal	 time	 intervals.	 Specifically,	
we	took	479	estimates,	spaced	exactly	1	s	apart,	from	2	s	
post-	block	 onset	 until	 480	s	 post-	block	 onset	 (interpo-
lated	contractility	timeseries).	Finally,	these	interpolated	
contractility	 timeseries	 were	 normalized	 as	 a	 t-	statistic,	
that	is,	each	interpolated	contractility	estimate	expressed	
as	a	 t-	statistic	relative	 to	 the	 timeseries's	 remaining	478	
values.	We	refer	to	this	 t-	statistic-	normalized	timeseries	
from	 now	 on	 as	 the	 ‘contractility’	 timeseries.	 A	 grand	
average	contractility	timeseries	across	participants,	sepa-
rately	for	each	block,	is	presented	in	Figure 4.

F I G U R E  3  Within-	block	timing	of	Grip	task	and	rest.	This	structure	was	performed	for	each	hand.

F I G U R E  4  Grand	average	time	series	of	contractility	across	participants	for	left-		and	right-	hand	blocks	of	trials.
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8 of 13 |   STUMP et al.

2.6	 |	 Bayesian modelling framework

The	primary	objective	of	 this	analyses	was	 to	determine	
whether	TREV	could	reliably	capture	increases	in	group-	
level	contractility	 that	corresponded	to	the	events	 in	the	
Grip	task,	either	in	response	to,	or	in	anticipation	of	a	grip.	
We	additionally	required	evidence	robust	to	type	I	error,	
given	our	sample	size	(n	=	30).	Given	these	requirements,	
we	 accordingly	 used	 a	 hierarchical	 Bayesian	 framework	
which	 hypothesized	 that	 the	 (n	=	30)	 group	 distribution	
of	 contractility	 estimates	 at	 each	 timepoint	 (t)	 formed	 a	
Student's	 T	 distribution,	 T(t)	~	Student's	 T	 (mu(t),	 sig(t),	
nu).	In	doing	so	we	obviate	the	need	to	correct	for	multi-
ple	comparisons	inherent	with	null	hypothesis	testing.	We	
formally	considered	contractility	to	have	increased	beyond	
baseline	at	a	given	moment	where	the	estimated	mean	of	
a	 timepoint's	 distribution	 (mu(t))	 credibly	 exceeded	 the	
mean	across	all	timepoints	(Mmu).	Mmu	is	itself	fitted	in	the	
same	model	as	 the	mean	of	a	hierarchical	Gaussian	dis-
tribution	(Gmu)	which	constrains	estimates	of	each	mu(t)	
by	serving	as	their	prior	(Gmu	~	N	(Mmu,	Smu)).	This	hierar-
chical	relation	between	Mmu	and	each	measure	of	mu(t)	
minimizes	type	I	risk.	Specifically,	Bayes	theorem	ascribes	
joint	probabilities	to	both	the	prior	and	the	observed	data	
in	 posterior	 estimates,	 meaning	 that	 outlier	 datapoints	
will	 have	 minimal	 impact	 on	 broader	 estimates.	 For	 ex-
ample,	if	most	values	for	mu(t)	are	within	a	tight	range	(as	
we	would	expect	in	a	data	set	of	contractility	values	with	
long	rest	periods	between	grips),	the	hierarchical	distribu-
tion	will	be	characterized	by	a	more	certain	mean	and	low	
variance	(low	value	of	Smu),	which	would	then	serve	as	a	
strict	prior	on	mu(t)	estimates,	biasing	them	towards	the	
group	mean	(i.e.	a	nail	that	stands	out	gets	hammered	in).	
This	hierarchical	framework	therefore	requires	strong	evi-
dence	before	any	mu(t)	is	formally	accepted	as	a	credible	
departure.	 In	 other	 words,	 in	 a	 context	 requiring	 multi-
ple	hypothesis	tests,	the	hierarchical	Bayesian	framework	
imposes	 an	 adjustment	 to	 the	 level	 of	 evidence	 needed	
for	 credible	 effects,	 where	 the	 data	 itself	 determine	 that	
level	of	adjustment	 instead	of	an	arbitrary	criterion	(e.g.	
Bonferroni).

We	 fitted	 a	 hierarchical	 model	 separately	 for	 blocks	
where	grip	was	administered	with	the	right	and	left	hand.	
In	 each	 case,	 the	 specific	 free	 parameters	 of	 our	 model	
were	mu(t)	and	sigma(t),	that	is,	the	479	timepoint-	specific	
mean	and	standard	deviation	parameters	 for	group-	level	
SNS	distributions	at	each	timepoint	across	each	block.	We	
did	not	fit	the	nu	parameter	hierarchically	and	assigned	it	
the	same	uninformed	prior	(ν	=	1)	in	each	model.	As	men-
tioned	above,	each	mu(t)	parameter	was	constrained	by	a	
hierarchical	Gaussian	distribution	(Gmu)	with	free	param-
eters	Mmu	and	Smu	corresponding	respectively	to	its	mean	
and	standard	deviation.	Mmu	was	assigned	an	uninformed	

Gaussian	prior,	N	(0,	1),	while	Smu	was	assigned	an	unin-
formed	half-	Gaussian	prior	(forcing	values	to	be	positive),	
half	N	(1).	Each	sigma(t)	was	also	constrained	by	hierar-
chical	 Gaussian	 distribution	 (Gsigma),	 which	 respectively	
used	an	uninformed	Gaussian	and	half-	Gaussian	prior	for	
its	two	free	parameters,	that	is,	its	mean	(Msigma	~	N	(0,	1))	
and	 standard	 deviation	 (Ssigma	~	half	 N	 (1)).	We	 formally	
compared	 each	 mu(t)	 posterior	 with	 that	 of	 the	 Mmu	 by	
computing	 the	 minimum-	width	 Bayesian	 credible	 inter-
val	 (highest	 density	 interval	 (HDI))	 of	 mu(t)	 –		 Mmu	 and	
only	 considered	 strong	 evidence	 of	 a	 departure	 at	 each	
timepoint,	 that	 is,	where	resulting	HDIs	did	not	contain	
zero.

Contractility	timeseries	were	z	score	normalized	prior	
to	 fitting	 across	 all	 participants.	 Each	 model's	 posterior	
distributions	 were	 sampled	 across	 four	 chains	 of	 5000	
samples	(20,000	total),	after	burning	an	initial	5000	sam-
ples	per	chain	to	tune	the	sampler's	step-	size	to	reach	0.95	
acceptance.	We	estimated	HDIs	using	the	default	setting	
in	the	arviz	package	(Kumar	et	al., 2019).

2.7	 |	 Sliding window rate of change

We	performed	a	sliding	window	deterministic	regression	
to	 enumerate	 the	 rate	 of	 change	 in	 contractility	 at	 each	
point	 in	our	 timeseries.	At	each	 timepoint	we	estimated	
the	rate	of	change	in	contractility	over	the	ensuing	20	s	of	
the	 timeseries.	 Specifically,	 for	 each	 timepoint(t)	 we	 fit-
ted	 a	 distribution	 of	 coefficients	 (B(t)),	 containing	 5000	
coefficients	(b(k)),	where	each	b(k)	estimated	the	relation	
between	an	arbitrary	time	vector	[1,	…,	20]	and	independ-
ent	draws	from	the	proceeding	20	posteriors	of	mu,	that	
is,	 the	20-	element	vector	 [[mu(t)](k),	…,	 [mu(t	+	19)](k)].	
To	 identify	 credibly	 positive	 rates	 of	 change,	 we	 tested	
whether	97%	of	each	deterministic	distribution	(B(t))	was	
above	zero.

3 	 | 	 RESULTS

We	 tested	 whether	 a	 thorax-	independent	 monitor	 of	
cardiac	 impedance	 (TREV)	 could	 reliably	 describe	 fluc-
tuations	 in	 cardiac	 contractility	 that	 credibly	 exceed	
baseline	as	human	participants	perform	a	task	known	to	
increase	 cardiovascular	 sympathetic	 demand	 (Stanek	 &	
Richter, 2016;	Stanek	&	Richter, 2021).	Thirty	participants	
completed	both	blocks	of	three	incentivized	max-	intensity	
grips,	with	rest	periods	of	2	min	both	between	each	grip	
and	 following	 the	 final	 grip.	 Participants	 showed	 strong	
motivation	 to	 grip	 at	 maximum	 intensity,	 supported	 by	
29	of	30	achieving	a	bonus	payment	(contingent	on	beat-
ing	their	predetermined	max	threshold)	with	at	least	one	
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   | 9 of 13STUMP et al.

hand,	and	21	of	30	achieving	the	bonus	payment	with	both.	
Figure 5	depicts	exemplar	contractility	for	two	heartbeats	
from	a	single	subject,	one	in	the	rest	phase	prior	to	the	sec-
ond	grip	with	their	right	hand,	and	another	in	the	grip's	
immediate	aftermath.

After	linear	resampling	to	temporally	align	contractil-
ity	across	participants	and	normalizing	each	block	sepa-
rately	as	a	t-	statistic,	group-	level	contractility	in	temporal	
approximation	 to	 each	 grip	 was	 assessed.	The	 results	 of	
the	 hierarchical	 Bayesian	 model	 fitted	 to	 contractility	
timeseries	 accompanying	 left-	hand	 grips	 are	 depicted	 in	
the	 left	 panel	 of	 Figure  6.	 TREV	 reliably	 captured	 con-
tractility	exceeding	baseline	 following	grips	with	the	 left	
hand.	Left-	hand	grips	were	accompanied	by	credible	base-
line	 departure	 in	 seconds	 after	 grip	 onset	 at	 grip	 1:	 [11,	
12,	 13,	 15],	 grip	 2:	 [−8,	 5,	 10,	 11,	 13]	 and	 grip	 3:	 [8,	 12,	
13,	 14,	 15].	 Each	 grip	 was	 therefore	 accompanied	 by	 at	
least	4	individual	seconds	of	credible	baseline	departure.	
Departures	mostly	followed	the	grips	and	never	followed	
a	grip	by	more	than	15	s.	Each	grip	was	associated	with	at	
least	two	consecutive	seconds	of	baseline	departure,	with	
grip	3	associated	with	the	longest	sustained	peak	contrac-
tility	(four	consecutive	points).

The	results	of	the	hierarchical	Bayesian	model	fitted	to	
contractility	timeseries	accompanying	right-	hand	grips	are	
depicted	in	the	right	panel	of	Figure 6.	Right-	hand	grips	
were	 accompanied	 by	 credible	 baseline	 departure	 after	

grip	onset	(in	seconds)	for	grip	1:	[−114,	5,	6,	7,	8,	9,	12,	13],	
grip	2:	[4,	5,	6,	7,	8,	9]	and	grip	3:	[11,	66].	Discounting	the	
two	outliers	(preceding	grip	1	and	following	grip	3),	each	
grip	was	therefore	accompanied	by	at	least	1	s	of	credible	
baseline	departure.	Departures	all	followed	the	grips	and	
never	followed	a	grip	by	more	than	13	s.	Grip	2	was	associ-
ated	with	the	longest	sustained	peak	contractility	(six	con-
secutive	points).	TREV	again	appeared	to	reliably	capture	
contractility	 exceeding	 baseline	 following	 grips	 with	 the	
right	hand,	although	a	pair	of	outliers	were	present	and	
the	duration	of	peak	contractility	seemed	to	abate	over	the	
course	of	the	three	grips.

3.1	 |	 Sliding window rate of change

As	depicted	in	Figure 7,	for	both	the	left-		and	right-	hand	
grips,	the	rate	of	change	estimate	over	a	sliding	20-	s	time	
window	was	credibly	positive	at	numerous	timepoints	in	
the	series	preceding	each	grip.	For	the	left	hand,	the	earli-
est	 of	 these	 credible	 pre-	grip	 changes	 occurred	 at	 t	=	62,	
that	 is,	 58	s	 prior	 to	 the	 first	 grip;	 at	 t	=	185,	 that	 is,	 55	s	
prior	to	the	second	grip;	and	at	t	=	349,	that	is,	11	s	prior	
to	the	third	grip.	For	the	right	hand,	the	earliest	of	these	
credible	 pre-	grip	 changes	 occurred	 at	 t	=	45,	 that	 is,	 75	s	
prior	 to	 the	 first	 grip;	 at	 t	=	178,	 that	 is,	 62	s	prior	 to	 the	
second	grip;	and	at	t	=	348,	that	is,	12	s	prior	to	the	third	
grip.	Interestingly,	therefore,	we	observed	a	trend	in	both	
hands,	whereby	the	rate	of	change	became	credibly	posi-
tive	much	closer	to	the	initiation	of	the	grip	by	the	third	
grip,	consistent	with	the	allostatic	principle	of	participants	
learning	task	requirements	and	reserving	a	potentially	ex-
pensive	 increase	 in	cardiac	contractility	until	 the	time	it	
was	most	critically	needed.

4 	 | 	 DISCUSSION

There	 is	 expanding	 interest	 across	 multiple	 human	 re-
search	 disciplines	 in	 robustly	 capturing	 event-	related	
perturbations	 of	 the	 sympathetic	 response	 in	 the	 heart.	
Consequently,	 there	 is	 a	 need	 for	 new	 assays	 of	 cardiac	

F I G U R E  5  Top	row	is	a	sample	timeseries	of	contractility	
estimated	at	100	heartbeats.	Bottom	row	shows	how	contractility	is	
estimated	from	impedance	jerk	timeseries	at	two	single	heartbeats.

F I G U R E  6  Results	of	hierarchical	Bayesian	model	depicting	credible	departures	from	baseline	contractility	(in	red)	for	left-		and	right-	
hand	grips.
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contractility	 that	 both	 reduce	 preparatory	 requirements	
and	 offer	 increased	 signal	 strength	 in	 the	 face	 of	 back-
ground	noise.	 In	 this	study	we	used	a	novel	 trans-	radial	
electrical	 bioimpedance	 velocimetry	 device	 (TREV),	 at-
tached	 to	 the	 forearm	 of	 human	 participants,	 and	 in-
vestigated	 whether	 it	 could	 reliably	 capture	 changes	 in	
group-	level	 contractility	 that	 corresponded	 to	 events	
known	 to	 increase	 sympathetic	 drive,	 a	 max	 Grip	 task	
(Grip	task).	We	observed	that	TREV	electrodes	can	be	ap-
plied	relatively	quickly	with	minimal	training	and	prepa-
ration,	and	can	even	be	repositioned	(from	one	arm	to	the	
other)	efficiently	between	blocks	of	a	task.	We	further	ob-
served	TREV	to	register	visually	identifiable	beat-	to-	beat	
signals	from	the	radial	and	ulnar	artery	corresponding	to	
the	 second	derivative	of	 the	measured	 impedance	wave.	
In	 preprocessing,	 we	 could	 readily	 control	 for	 potential	
confounding	effects	of	respiratory	activity	and	heart	rate	
on	 beat-	wise	 contractility	 timeseries.	 We	 observed	 the	
contractility	 timeseries	 to	reliably	depart	baseline	at	key	
events	 in	 the	 Grip	 task.	 Remarkably,	 these	 departures	
were	seen	at	the	single-	trial	level	across	participants	(i.e.	
without	 averaging	 across	 trials).	 We	 therefore	 conclude	
that	TREV	offers	an	exciting	development	in	cardiac	au-
tonomic	 research	 for	 human	 researchers	 interested	 in	
event-	related	capture	of	cardiac	contractility.

We	 employed	 a	 data-	driven	 analysis	 within	 a	 hier-
archical	 Bayesian	 framework,	 which	 used	 the	 entire	
timeseries	of	data	recorded	across	sessions,	to	determine	

when	contractility	estimated	by	TREV	credibly	exceeded	
baseline	 fluctuations.	 The	 primary	 advantage	 of	 this	
framework	is	that	it	removed	all	need	to	impose	arbitrary	
criteria	 on	 grip	 events	 or	 contractility	 activity,	 that	 is,	 a	
priori	deciding	epochs	around	task	events	to	refine	anal-
ysis,	or	a	priori	deciding	a	criterion	that	constituted	‘cred-
ibly	exceeding	baseline’.	The	analysis	was	not	assisted	by	
any	averaging	across	events	to	reduce	signal	to	noise.	The	
hierarchical	Bayesian	framework	also	imposed	conserva-
tiveness	with	respect	to	credible	departures	from	baseline	
across	 a	 large	 number	 of	 hypothesis	 tests.	 Despite	 the	
moderate	sample	size,	the	analytic	approach	nonetheless	
revealed	 reliable	 group-	level	 increases	 in	 contractility	 at	
each	 of	 the	 six	 grips	 executed	 by	 participants.	These	 in-
creases	 were	 corroborated	 with	 post	 hoc	 confidence	 in-
tervals	of	contractility	relative	to	individual	baselines.	We	
propose	 that	 the	observed	significant	change	 in	contrac-
tility	to	the	physical	challenge	imposed	by	the	Grip	task	is	
driven	primarily	by	a	sympathetic	response	(as	heart	rate	
and	respiration	were	adjusted	for).	Note	that	the	heart	rate	
adjustment	might	attenuate	the	magnitude	of	the	contrac-
tility	estimate	if	there	is	concomitantly	strong	sympathetic	
chronotropy.	The	other	potential	modifier	of	the	measure-
ment	would	be	an	acute	rise	in	blood	pressure	mediated	
through	 sympathetic	 alpha	 stimulation	 to	 the	 vascular	
bed	 of	 muscles.	 However,	 there	 are	 several	 factors	 that	
make	 this	 unlikely.	We	 used	 a	 brief	 isometric	 grip	 force	
paradigm	where	a	bulb	was	squeezed	maximally	for	only	

F I G U R E  7  Sliding	window	rate-	of-	change.	Each	column	of	raster	plots	are	50	samples	from	distributions	of	regression	coefficients	
measuring	change	in	contractility	over	next	20-	s	window.	Yellow	colours	are	positive	(increasing	contractility).	Markers	below	each	panel	
reflect	timepoints	when	97%	of	distribution	is	positive,	that	is,	credibly	positive	increase	in	contractility.
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2	s.	 Previous	 studies	 demonstrating	 a	 blood	 pressure	 ef-
fect	have	relied	entirely	on	sustained	isometric	force	pro-
duction	 (El	Sayed	et	al., 2016;	Gandevia	&	Hobbs, 1990;	
MacDougall	et	al., 1992).	In	contrast,	short	duration	grip	
has	 been	 used	 to	 avoid	 changes	 of	 blood	 pressure	 (Lott	
et	al., 2002).	Furthermore,	a	combined	study	of	sustained	
isometric	 grip	 force,	 blood	 pressure	 and	 muscle	 sympa-
thetic	 nerve	 activity	 demonstrated	 that	 blood	 pressure	
rises	 slowly;	 mean	 arterial	 pressure	 increased	 only	 ~7%	
over	 the	 first	15	s	after	grip	onset	 (El	Sayed	et	al., 2016).	
The	changes	observed	with	TREV	are	far	greater	in	mag-
nitude	and	develop	more	rapidly.	More	importantly,	blood	
pressure	 changes	 should	 primarily	 influence	 afterload	
and	stroke	volume,	but	not	peak	acceleration	of	 flow	as	
measured	by	TREV.	Given	these	points,	the	main	effect	on	
this	measurement	 is	 likely	to	be	a	sympathetic	 inotropic	
effect	to	the	heart,	consistent	with	motivational	intensity	
theory.	This	 theory	posits	 that	 the	 sympathetic	 response	
should	 scale	 with	 the	 level	 of	 task	 difficulty,	 an	 effect	
which	has	been	observed	in	both	cognitive	and	Grip	tasks	
(see	Richter	et	al., 2016,	for	a	review).

Note	 that	 our	 criterion	 for	 baseline	 was	 the	 average	
value	 across	 all	 datapoints	 in	 the	 timeseries,	 which	 the-
oretically	 incorporates	 all	 preparatory	 increases	 in	 sym-
pathetic	 activity	 leading	 up	 to	 grip	 execution.	When	 we	
employed	 a	 slope-	based	 analysis	 strategy,	 we	 addition-
ally	 observed	 credible	 anticipatory	 changes	 of	 contrac-
tility	just	prior	to	grip	onset	for	all	trials	and	with	either	
hand.	This	observation	 is	consistent	with	the	role	of	 the	
sympathetic	nervous	system	in	allostatic	regulation,	pro-
viding	 just	 enough	 input	 and	 just	 in	 time	 (McEwen	 &	
Wingfield, 2003).

In	conclusion,	we	observed	that	TREV	reliably	captures	
contractility	 increases	 to	 individual	 events.	 Capturing	
these	 contractility	 changes	 has	 the	 potential	 to	 greatly	
contribute	 towards	 improving	 our	 knowledge	 of	 how	
humans	 synchronize	 autonomic	 regulation	 while	 moni-
toring	broader	 state	 information,	allowing	us	 to	develop	
more	 holistic	 technologies	 for	 human-	machine	 integra-
tion	that	can	assist	with	situational	awareness,	manoeu-
vrability	and	decision	making.
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SUPPORTING INFORMATION
Additional	 supporting	 information	can	be	 found	online	 in	
the	Supporting	Information	section	at	the	end	of	this	article.

Appendix S1.	Jupyter-	based	signal	processing	software.
Figure S1.	Cell	1	GUI.
Figure S2.	 GUI	 for	 cell	 2.	 Note	 the	 peak	 threshold	 is	
inputted	 as	 0.5.	 This	 threshold	 value	 helps	 avoid	 flutter	
between	 acceleration	 peaks.	 The	 participant	 has	 a	
premature	ventricular	contraction	at	time	16.5	s	(causing	
a	 reduction	 of	 contractility	 due	 to	 reduced	 ventricular	
filling).	 Also	 note	 the	 onset	 of	 MRI	 scanning	 at	 18	s.	
Despite	the	associated	MRI	noise,	acceleration	peaks	are	
still	visible	and	robust.
Figure S3.	Cell	3	GUI.	The	acceleration	time	series	plotted	
over	time	with	detected	peaks.	The	user	is	able	to	use	the	
slider	along	the	bottom	of	the	graph	to	scroll	through	the	
data	and	adjust	the	peak	location	as	needed.
Figure S4.	Cell	4	GUI.	The	contractility	timeseries	plotted	
over	time.
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