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Within‑subject reproducibility 
varies in multi‑modal, longitudinal 
brain networks
Johan Nakuci 1,2*, Nick Wasylyshyn 3,4, Matthew Cieslak 5, James C. Elliott 5, Kanika Bansal 3,6, 
Barry Giesbrecht 5,7, Scott T. Grafton 5,7, Jean M. Vettel 3,4,5, Javier O. Garcia 3,4 & 
Sarah F. Muldoon 1,8*

Network neuroscience provides important insights into brain function by analyzing complex 
networks constructed from diffusion Magnetic Resonance Imaging (dMRI), functional MRI (fMRI) 
and Electro/Magnetoencephalography (E/MEG) data. However, in order to ensure that results are 
reproducible, we need a better understanding of within‑ and between‑subject variability over long 
periods of time. Here, we analyze a longitudinal, 8 session, multi‑modal (dMRI, and simultaneous 
EEG‑fMRI), and multiple task imaging data set. We first confirm that across all modalities, within‑
subject reproducibility is higher than between‑subject reproducibility. We see high variability in the 
reproducibility of individual connections, but observe that in EEG‑derived networks, during both 
rest and task, alpha‑band connectivity is consistently more reproducible than connectivity in other 
frequency bands. Structural networks show a higher reliability than functional networks across 
network statistics, but synchronizability and eigenvector centrality are consistently less reliable 
than other network measures across all modalities. Finally, we find that structural dMRI networks 
outperform functional networks in their ability to identify individuals using a fingerprinting analysis. 
Our results highlight that functional networks likely reflect state‑dependent variability not present in 
structural networks, and that the type of analysis should depend on whether or not one wants to take 
into account state‑dependent fluctuations in connectivity.

The introduction of network theory to neuroscience has increased our understanding of the brain’s functional 
and structural organization. This powerful tool has given new insights into how higher order brain functions 
 arise1,2 and how changes can lead to  pathology3. However, questions have been raised regarding the reliability of 
brain network properties given the effects of noise in the signal, particularly in  fMRI4–6. Still, despite the presence 
of noise, brain networks have been found to exhibit consistent properties over time among individual network 
connections and in higher order properties, such as the clustering coefficient, characteristic path length, and 
assortativity, for structural connectivity as measured with  dMRI7–11,  fMRI12–25 and EEG/MEG18,26,27. Unfortu-
nately, most studies thus far have been limited to the analysis of a single imaging modality and/or few scanning 
sessions, raising questions about how reliable these properties are over longer times and across modalities.

While it is clear that there is some level of reliability in network properties within an individual over time, it is 
also important to understand how the state of the brain (e.g., resting wakefulness versus active task  situations28), 
and the neural methodology (e.g., fMRI versus EEG) contributes to this reliability across multiple days. The 
“resting” brain (e.g., default mode network) is a state that has been shown to be metabolically  demanding29 and 
associated not only with task performance (e.g., Ref.30) but also disease (e.g., Ref.31), very much similar to task-
related activity; however, the “resting” brain is fundamentally different from task-related activity, as engagement 
in a task requires precise recruitment of and coordination between regions of the  brain28. Also, in a field with a 
variety of diverse methodologies (e.g., fMRI, EEG, MEG, PET, etc.), neuroscience researchers draw conclusions 
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from methods that are measuring fundamentally different neural properties. For example, fMRI is an indirect 
measurement of neural activity, as it measures oxygenation and neural activity is inferred. In contrast, EEG, 
a “direct” measurement, is measured on the scalp and filtered by a variety of tissues and bone separating the 
scalp from the brain. In terms of reliability, experimental design and task demands have shown to contribute 
to reliability in  fMRI32,33, and EEG suffers from a large variety of factors that could impact reliability as  well34. 
However, the reliability of networks derived from simulatneous fMRI and EEG has not been extensively studied 
and comparisons has been limited to resting-state35.

In addition to studying reliability within an individual over time, one can also ask about how network prop-
erties differ between individuals. Indeed, recent work has shown that brain networks can provide insight into 
the unique features associated with a  person19,36–38. A giant leap toward the goal of understanding differences 
in brain networks was made with the finding that functional brain activity has unique features that can identify 
a person in a group, similar to a  fingerprint39. This fingerprinting property has also been found in structural 
 connectomes40,41. Fingerprinting is important because it allows neuroimaging analyses to focus on the individual 
and not only on group-level  differences39.

To further understand reliability in brain networks over time, across different states, and across modalities, 
we quantified within- and between-subject reliability in a rich longitudinal and multi-modal dataset consisting 
of dMRI and simultaneous EEG-fMRI recording during resting-state and multiple tasks. Comparing reliability 
across different imaging modalities is particularly important because in recent years, studies have fused multiple 
modalities to address outstanding questions in neuroscience. Further, while previous work has shown that diffu-
sion MRI is highly reliable with sufficient  images42, other work has shown that structural changes can occur over 
a short time period with  exercise43, working memory  training44, and changes in sleep  patterns45. Understanding 
the relationship between structure–function coupling and reliability over time and/or across tasks can therefore 
aide in studies that incorporate analysis across modalities.

Importantly, the data set studied here was part of a larger study examining naturalistic sleep variability in 
 individuals46. Here, we do not focus on the effects of variation in sleep pressure (i.e., homeostatic sleep drive or 
the need to sleep), but instead note that due to the study design, subjects varied in the amount of sleep pressure 
they experienced during each imaging session, presumably augmenting variability within- and between-subjects’ 
functional brain network over time. We examine both structural and functional brain networks in this data set 
to study reliability of individual connections and higher order network statistics. To create structural networks, 
dMRI imaging was used to perform tractography and network connections were defined as the density of 
streamlines between brain regions. fMRI networks were constructed using the Pearson-Product Correlation 
to quantify the magnitude of the statistical relationship in the BOLD signal between brain regions. For EEG, 
the time-series signal from each sensor was first separated into traditional frequency bands of δ (1–3 Hz), θ 
(4–7 Hz), α (8–13 Hz), β (14–30 Hz) and γ (30–60 Hz), and functional connectivity was calculated using the 
debiased-weighted Phase-Lag Index (dwPLI) which quantifies phase synchronization between sensors based on 
the consistency of the lag between the instantaneous phases of two  sensors47.

In the current work we evaluate: (1) which brain connections and network measures are most reliable within- 
and between-individuals; (2) how reliability varies across state and modality; and (3) how the different imaging 
modalities, dMRI, fMRI, and EEG, perform in a fingerprinting analysis to identify an individual.

Results
We analyzed the reproducibility of brain network properties derived from structural and functional brain imag-
ing using the intra-class correlation (ICC). For the dMRI analysis, this involved analyzing brain networks from 
25 subjects across 8 sessions for a total of 200 structural networks. For the fMRI and EEG analysis, a tradeoff 
between maximizing subjects and sessions was made across resting-state and tasks resulting in a range from 17 
to 26 subjects, each with 6 sessions (see “Materials and methods” section for details). For each connection in 
the network or network measure, the ICC values were calculated using the mean square values for the subject 
and session terms.

Reliability of individual connections. We first assessed the reliability of individual connections between 
brain regions or sensors. We calculated the ICC within a subject  (ICCw) and between subjects  (ICCb) for each 
connection across the three imaging modalities. As expected, we found that across imaging modalities, individ-
ual network connections are more reliable within- than between-subjects (Fig. 1A,B). Across imaging modali-
ties, individual edges exhibit high variability in their reliability scores, with  ICCw values ranging from poor 
(< 0.4) to excellent (> 0.8) reliability (Fig. 1A). By contrast,  ICCb scores had consistently poor (< 0.2) reliability 
across all imaging modalities (Fig.  1B). For dMRI, the mean  ICCw was 0.21 ± 0.24 (SD) and the mean  ICCb 
score was -1 ×  10–4 ± 0.01 (SD). For resting-state fMRI the mean  ICCw was 0.23 ± 0.13(SD). Lastly, for the EEG 
the α-band had the highest mean  ICCw (0.39 ± 0.16(SD) compared to the other frequencies [δ: 0.03 ± 0.05(SD); 
θ: 0.09 ± 0.08(SD); β: 0.20 ± 0.12(SD); γ: 0.10 ± 0.07(SD)]. To assess differences across imaging modalities, we 
used a one-way ANOVA where dMRI, fMRI, and each EEG frequency band (δ, θ, α, β, γ) were treated as sper-
ate groups, and we found significant differences in the  ICCw  (F7,85249 = 2241;  pcorrected <  < 0.001; η2 = 0.18). One 
important feature is the long-tail distribution in the dMRI  ICCw indicating that a small number of connections 
have excellent (> 0.8) reliability. We additionally looked to see if there was a relationship between connection 
strength and reliability (Fig. 1C–E).

We next assessed if for dMRI and resting-state fMRI there was an association between  ICCw scores and cog-
nitive systems. First, we mapped edgewise scores and then averaged over edges within each of the 17 cognitive 
systems from the Schaefer 200 layout combined with 21 subcortical regions from Harvard–Oxford atlas. As a 
trend, connections within a cognitive system for dMRI and resting-state fMRI exhibited the strongest reliability 
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Figure 1.  Reliability of individual connections. (A) Distribution of  ICCw and (B)  ICCb for dMRI and resting-
state fMRI and EEG frequency bands. For each violin plot, the central dot indicates the median, and the line 
indicates the 25th–75th percentiles. (C–E) Distribution plots showing the connection strength of  ICCw scores 
for (C) dMRI; (D) Resting-State fMRI and (E) EEG-α. (F–H) Average reliability of connection within and 
between cognitive systems for (F) dMRI and (G) resting-state fMRI. (H) Differences in average  ICCw scores 
across cognitive systems between dMRI minus the fMRI. Blue boxes highlight connections between cognitive 
systems in which reliability was stronger in dMRI. (I) Connections with  ICCw scores in top 5% for δ, θ, α, β and 
γ frequency bands plotted on the scalp for resting-state EEG. Cognitive systems are defined as Cont: Control 
A/B/C, Default: Default Mode A/B/C, DorsAttn: Dorsal Attention A/B, Limbic, SalVentAtt: Salience/Ventral 
Attention A/B, SomMot: Somatomotor A/B, Subcortical, TempPar: Temporal Parietal, VisCent: Visual Central, 
VisPer: Visual Peripheral.
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as can be seen from the figure because of the high values along the diagonal (Fig. 1F,G, respectively). However, a 
direct comparison between dMRI and fMRI showed distinct distribution of reliability across cognitive systems. 
dMRI reliability was stronger within and between the Temporal Parietal Network, Visual, and Default Mode 
Networks (Fig. 1H, blue boxes). For the EEG data we could not perform the same mapping to cognitive systems, 
so instead resting-state  ICCw scores from the top 5%  ICCw distribution are plotted onto the scalp (Fig. 1I).

Given the different cognitive demands associated with task performance, one might expect reliability scores 
during task states to differ from those at rest. However, when we examined task induced changes in reliability, 
we found that task associated  ICCw and  ICCb values for fMRI and EEG scores exhibited a similar pattern to 
resting-state (Fig. 2). We found significant differences when comparing within- and between-subject reliability 
for fMRI  (F1,501389 = 1701, p << 0.001, η2 = 0.003; one-way ANOVA; Fig. 2A,C) and EEG  (F4,628 = 2547, p <  < 0.001, 
η2 = 16.2; one-way ANOVA; Fig. 2B,D).

We then focused on the effect a task had on within-subject reliability. For this, we limited our analysis to the 
 ICCw because  ICCb values were close to zero. We compared task differences in fMRI using a one-way ANOVA 
where each task is treated as a variable, and we found significant differences between tasks  (F10,501389 = 256, 
 pcorrected << 0.001, η2 = 0.005). It is worth noting that these differences were small, but, for example, resting-
state fMRI had consistently lower  ICCw values than the other tasks (Fig. 2A). For the EEG, we addition-
ally added each frequency band (δ, θ,α, β, γ) as a variable to the ANOVA design and found that the Task 
(Rest, Dot, Mod, Pvt, Dyn1-4, VWM1-3) x  Frequency(δ, θ, α, β, γ) interaction was significant  (F40,201190 = 291,  pcorrected << 0.001, 
η2 = 0.06). Overall, EEG frequency exhibited larger differences in reliability than task effects, with the α-band 
having the highest  ICCw scores.

Further, we assessed if for task fMRI there was an association between  ICCw scores and cognitive systems. We 
mapped edgewise scores to the 17 cognitive systems in the same manner as for the resting-state and plotted the 
difference between the  ICCw values during task and resting-state in Fig. 3. Confirming the edgewise results, we 
generally observed higher reliability during task states. For task EEG data,  ICCw scores from the top 5% of the 
 ICCw distribution were plotted onto the scalp and we did not notice any overt reconfiguration in scalp distribu-
tion from resting-state to task (Fig. 4).

Figure 2.  Reliability of individual connections (A and B) within-subjects  (ICCw) and (C and D) between-
subjects  (ICCb) for fMRI and EEG frequency bands across tasks: DOT, PVT, MOD, VWM-1:3, and DYN-1:4. 
For each plot, the figure shows the mean and standard deviation. DOT dot probe task, DYN dynamic attention 
task, MOD modular math task, PVT psychomotor vigilance task, VWM 1–3 visual working memory.



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6699  | https://doi.org/10.1038/s41598-023-33441-3

www.nature.com/scientificreports/

However, these effects in the fMRI and EEG could be impacted by intra-session  reliability19,20,22 and motion 
artifacts in fMRI  specifically6,48. We estimated the intra-session reliability by splitting the fMRI and EEG data into 
two halves and separately calculating the functional connectivity for each half of the session. The intra-session 
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similarity between functional connectivity matrices was assessed using the Pearson Correlation. We found 
moderate intra-session similarity for fMRI data (r > 0.68 for all tasks; Supplementary Fig. S1A) and strong intra-
session similarity for EEG data (r > 0.96 for all tasks; Supplementary Fig. S1B).

The lower intra- and inter-session reliability observed in the fMRI data could be due to the limited time of the 
recordings. Thus, the inter-session fMRI reliability could potentially be increased with more data per subject, as 
shown in previous work by Gratton et al.22 and Laumann et al.20, or this issue could be mitigated by combining 
data across sessions using a “background connectivity”  approach49–51. However, given that both modalities were 
recorded for the same amount of time, this suggests that the sampling rate could also have an impact on intra-
session reliability. Further, we note that many of the EEG frequency bands have a high intra-session reliability 
(Fig. S1), yet still show lower ICCw scores than that of the fMRI data (Fig. 1A). This highlights the fact that rela-
tionship between inter-and intra-session reliability is complex and potentially modality dependent. Future work 
should take care when assessing inter-session reliability, especially in data sets with limited time of recordings.

Additionally, since motion can have a significant impact on fMRI functional connectivity, we evaluated how 
well our preprocessing pipeline accounted for motion. We in general, found weak correlations between motion 
(as measured using frame displacement) and functional connectivity (Supplementary Fig. S2). Further, since 
the relationship between motion and functional connectivity has been found to be distance  dependent48, we 
evaluated this relation and found no such relation (r < 0.04; all panels in Supplementary Fig. S3).

Reliability of network measures. We next assessed the reliability of higher order network properties. For 
each brain network, nine measures were calculated along with their corresponding  ICCw and  ICCb scores. Since 
the functional connectivity was estimated on 200 regions for the fMRI and 62 sensors in the EEG, this difference 
could be a confound when comparing between the two modalities. To more closely match the number of EEG 
sensors, we estimated fMRI functional connectivity and network measures using the Desikan-Killiany brain 
atlas which contains 68 regions (fMRI68).

We first assessed differences among  ICCw and  ICCb scores using a one-way ANOVA where all network 
measures across imaging modalities were pooled together and grouped based on whether they are a within- or 
between-subject measure. As expected, we found stronger values for the  ICCw compared to the  ICCb  (F1,125 = 104, 
 pcorrected << 0.001, η2 = 0.83; Fig. 5).

Focusing on the within-subject measures, as shown in Fig. 5A, across all imaging modalities and network 
properties, the dMRI exhibited the highest  ICCw scores [0.71 ± 0.06 (SD)]. By comparison, resting-state fMRI 
exhibited relatively poor reproducibility [fMRI: 0.35 ± 0.12 (SD); fMRI68: 0.30 ± 0.11 (SD)], and the EEG repro-
ducibility was frequency dependent with the α-band having the highest  ICCw scores [0.43 ± 0.09 (SD)]. These 
results were tested with a one-way ANOVA in which dMRI, fMRI, fMRI68, and each EEG frequency bands 
(δ, θ,α, β, γ) were treated as separate groups, and we found significant differences between them  (F7,62 = 65, 
 pcorrected << 0.001, η2 = 7.33; Fig. 6A). The same analysis for the  ICCb scores found significant difference across 
all modalities  (F7,62 = 15,  pcorrected <  < 0.001, η2 = 1.69; Fig. 5A), but these differences were driven by the fMRI68 
having a stronger  ICCb [0.11 ± 0.08 (SD)] whereas the other modalities had  ICCb close to zero (Fig. 5B). These 
 ICCb results suggest that, for fMRI, the choice of atlas could be an important factor in identifying consistent 
measures across subjects.

We then asked if performing a task alters the reliability of network measures (Fig. 6). To evaluate how a 
task alters the within- and between-subject reliability, for fMRI we designed an ANOVA that assessed changes 
across tasks, network measures, and ICC. We found significant effects for Task x ICC  (F8,80 = 99,  pcorrected << 0.001, 
η2 = 9.90) and Network Measure x ICC  (F10,80 = 9.88,  pcorrected << 0.001, η2 = 0.12; Fig. 6A). For the EEG, we added 
frequency as a factor to the ANOVA design and evaluated a Task x Frequency x Network Measure x ICC ANOVA 
design, and we found a significant interaction between Task x Frequency  (F32,792 = 5.35,  pcorrected < 0.001, η2 = 0.22) 
and Frequency x Network Measure  (F40,792 = 6.33,  pcorrected < 0.001, η2 = 0.32; Fig. 6A). From Fig. 6 it is apparent that 

Figure 5.  Graph Measures for dMRI and Resting-State fMRI and EEG for (A)  ICCw and (B)  ICCb values. For 
fMRI data, the analysis was conducted using both the Schaefer 200 (fMRI) and Desikan-Killiany (fMRI68) 
atlases.
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the α-band is the most consistent across resting- and task-state, while the β-band shows an increase in  ICCw in 
the task-states. It is also worth noting that Synchronizability and Eigenvector Centrality exhibited weaker  ICCw 
scores relative to the other metrics across resting- and task-states for both fMRI and EEG.

Further, we conducted the intra-session half-split similarity analysis for the network measures. Overall, we 
found stronger half-split similarity values across the EEG frequencies for each network measure and task when 
compared to half-split similarity values for the fMRI (Fig. S4). It is worth noting that the half-split reliability was 
lower for small-world propensity and synchronizability, reflecting their lower ICC values.

Fingerprinting analysis. Our analysis so far has confirmed that dMRI networks are more reliable within a 
subject than fMRI and EEG networks. Therefore, we expect that dMRI networks will have a higher probability of 
being able to identify an individual from a group, similar to a  fingerprint39. For functional networks, we would 
similarly expect the same for the α-band EEG, given the relatively higher reliability scores. In order to fingerprint 
an individual, brain networks from the individual should be more similar to each other across runs relative to 
networks obtained from other individuals. To formally assess the similarity between brain networks, we meas-
ured the similarity using the Euclidian distance (“Materials and methods”). Our results indicate that fingerprint-
ing was not uniform across all derived networks  (F7,236 = 285,  pcorrected << 0.001, η2 = 8.45). As expected, structural 
dMRI networks had the highest accuracy. However, the performance of fMRI networks was dependent on the 
number of regions, with connectivity based on the Schaefer 200 brain regions outperforming the 68 regions from 
the Desikan-Killiany atlas. Additionally, both fMRI atlases performed better than α-band EEG derived networks, 
despite the α-band exhibiting stronger reliability values. In fact, in the EEG, the β-band networks had the highest 
fingerprinting accuracy (Fig. 7A).

However, this analysis does not tell us about the separability across the networks derived from the different 
imaging modalities. Here, we define separability as the difference in similarity between the minimum within-
subject value for a network to the maximum between subject similarity for that network (see Materials and 
methods). Therefore, positive separability values indicate that a particular network for an individual is always 
more similar to other networks from that individual and negative values indicate the opposite. Separability values 
across imaging modalities were found to be significantly different  (F7,10093 = 7898,  pcorrected << 0.001, η2 = 5.48). In 
addition, despite dMRI and fMRI having similar accuracy in fingerprinting, dMRI networks were more separable 
than fMRI and EEG [dMRI: 0.14 ± 0.04 (SD); fMRI: -0.26 ± 0.27 (SD); fMRI68: − 0.74 ± 0.06 (SD); δ, θ, α, β and 
γ: < -0.85 (mean)] (Fig. 7B).

Discussion
In the current work, we analyzed the reproducibility of multimodal and multi-task structural and functional brain 
networks in a unique longitudinal and multi-modal dataset with simultaneous EEG-fMRI recordings. In our 
analysis, each subject contained brain networks derived from dMRI, fMRI and EEG data, allowing us to assess 
how reliability differed in brain networks derived from different modalities and across task states.

We first assessed the reliability of individual connections in the structural and functional brain networks 
and found stronger within- than between-subject reliability across all imaging modalities, in line with previous 
 results12,13,24,52–54. The most reliable connections were also the ones that tended to be the strongest, corroborating 
previous findings in fMRI  networks12,24. In addition, when mapped onto cognitive systems, these connections 
exhibited distinct patterning. As a trend, for dMRI and resting-state fMRI, connections within a cognitive system 
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Figure 6.  ICC values for network measures across task and resting-state. (A)  ICCw and (B)  ICCb values across 
tasks for fMRI and EEG frequency bands.
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exhibited the strongest reliability, consistent with previous studies in functional  networks12,52–54. However, a 
direct comparison between dMRI and resting-state fMRI showed distinct distribution of reliability across cogni-
tive systems. dMRI reliability was strongest within the Frontal-Parietal Control system and between the Visual 
to Default Mode and Temporal Parietal system, while in resting-state fMRI stronger values were distributed 
between cognitive systems.

When assessing task mediated changes, we found an increase in reliability across most tasks relative to resting-
state in fMRI networks. In addition, we observed an increase in this reliability across multiple sessions of a given 
task, potentially indicative of an effect of learning the task. This finding complements results from a previous 
study that found adding task-state fMRI networks improves predictive outcomes relative to resting-states  fMRI55. 
Here, we take care to note that the patterns of functional activity observed during a given task are expected to 
be different than those observed during rest, as they are likely the result of co-occurring BOLD responses across 
different regions of the brain that are specific to performing the task. As such, we also expect the patterns to be 
different between tasks that invoke different brain circuitry. While some studies consider these task-dependent 
signals in functional connectivity to artificially increase the observed underlying relationships between  regions56, 
here, we instead want to emphasize the observed differences between task-dependent patterns of functional 
connectivity, noting that the specific task being performed can differentially affect reliability measurements of 
task-dependent functional connectivity.

For EEG, the α- and β-bands had the highest reliability scores for both resting- and task-states, confirming 
previous  results26. The strong reliability for the α- and β-band could be due to the fact that these frequencies are 
consistently active, while the other frequency bands tend to have transient activity. In a similar manner to fMRI, 
EEG reliability increased during a task, but this increase was primarily in the α- and β-bands. In addition, we 
found no major changes when we mapped connections on the scalp from resting-state to task-state. This could 
be due to the low spatial resolution of  EEG57. Additionally, an inherent limitation of such EEG-fMRI data is the 
higher-than-normal noise in the EEG, thus requiring a larger number of channels to be interpolated. As a result, 
this could affect the reliability results in the EEG signal.

When examining the reliability of higher order network properties, we found that network properties had 
overall stronger reliability scores than individual connections in line with previous findings of Braun et al.21. This 
might lead one to ask how the prevalence of low reliability scores across most connections could produce fair to 
excellent reliability in higher order network properties? This result could be due to the fact that edges with higher 
reliability scores are associated with the stronger connections. Our graph theoretical properties are dependent 
on connection strength, and the stronger the connection, the more variance it accounts for in the higher order 
network values. Thus, despite most connections having poor reliability, the few strong connections with good 
to excellent reproducibility have a disproportionately higher impact on the reliability of a network measure. The 
notable exception is that in fMRI and EEG, synchronizability and eigenvector centrality had lower reliability 
scores than the other network properties. One possible reason for this is that these measures, particularly eigen-
vector centrality, are very sensitive to the state of the  subject58. These results indicate these measures might be 
more sensitive to detecting meaningful differences between individuals in studies where one is attempting to 
link functional brain connectivity to task performance or behavior.

We also found task associated differences in reliability for the fMRI and EEG. However, for the EEG, the 
strongest increases in reliability were in the α- and β-bands. However, in contrast to Deuker et al.18 we did not 
find a corresponding increase in  ICCw scores in the δ and θ bands with task.

We found that dMRI and fMRI outperformed EEG derived networks in fingerprinting. However, the sepa-
rability was not equal across these networks, with dMRI outperforming all functional networks. This is likely 
due to the fact that, unlike functional connectivity, structural connectivity is not state dependent. Also, despite 
the fact that the α-band EEG showed higher reliability, all EEG frequency bands performed worse than fMRI 
in our fingerprinting analysis. This is likely driven by the fact that the fMRI data has a larger number of strong 

dM
RI

fM
RI

fM
RI6

8
0

0.2

0.4

0.6

0.8

1

C
or

re
ct

 Id
en

tif
ic

at
io

n
dM

RI
fM

RI

fM
RI6

8
-1

-0.5

0

0.5

S
ep

ar
ab

ili
ty

)B)A

Figure 7.  Fingerprinting performance across imaging modalities. (A) Proportion of networks that were 
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connections than EEG data, and these strong connections will have a greater impact in the similarity calcula-
tions used in the analysis.

It has been found that brain activity measured with fMRI is stable over  time20,22,59,60 and in fMRI, within-sub-
ject variance can be reduced with high quality data with long scan times (~ 15 min) and multiple  sessions20,24,53,61. 
It has been argued that large amounts of data are needed in order to differentiate between true and artifact 
induced  variance6,19 and previous studies have found that reliability increases with more  data12,20,53,62,63. This 
high quality data is important because Horien et al.60 found that motion characteristics can be unique to an 
individual and can fingerprint a subject at a level greater than chance. In our data, individual scan times were 
limited to approximately 5 min, but data was collected over multiple sessions for a relatively large number of 
subjects, suggesting that we might expect more reliable results. However, our observation of the relatively weak 
accuracy and separability of EEG (a more direct measure of neuronal activity than fMRI) in fingerprinting an 
individual raises questions as to whether the increase in fingerprinting performance in fMRI on long time scans 
is based on neuronal activity. Also, respiration induced artifacts in fMRI exhibit the same stability over  time64, 
which could also lead to increased reliability measurements.

Our direct comparison of fingerprinting between structural and functional networks indicates that structural 
networks are more sensitive. In addition, these results indicate that the patterning in structural connectivity is 
far more unique to an individual than those in corresponding functional networks. These results suggest that 
structural networks might have more discriminative power than functional networks.

Unique brain connectivity features have previously been proposed to play a role in differences underlying 
behavior and  cognition65. Specifically, difference in behavioral performance in motor and decision associated 
tasks are correlated with fractional anisotropy of the corpus  callosum66,67, optic  radiation68 and grey matter 
 density69. Cortical thickness within the superior parietal lobes has been found to be correlated with the rate of 
switching in a perception based  task70. In addition, structural features unique to an individual lead to character-
istic brain functional activity in modeling analysis and task  performance38,71.

Is a connection with poor reliability good or bad? To answer this, we need to be mindful of the goal at hand. 
First and foremost, we need to make sure that reliability values are not due to noise in the signal or artificially 
low due to short lengths of recordings. On the other hand, if we are confident that low reliability is a genuine 
part of the signal, then that is also a very informative finding. The seminal work of Poldrack et al.72 found that 
functional connectivity exhibits a high level of variability within the same person over the course of a year. Along 
these lines, Noble et al.61 found that functional connections with strong reliability are not very informative when 
it pertains to predicting behavior. However, we need to be mindful that this is an effect limited to functional 
connectivity. Therefore, structural connections and/or higher-order network metrics might exhibit a stronger 
association between reliability and behavior. Also, finding highly reproducible brain connections and/or measures 
might be very important if we are looking for deviations from expected values that could be used as biomarkers 
for disease identification/progression. Alternatively, connections and/or measures with low reliability might be 
useful for studying individual differences and making correlations between structure and performance/behavior.

But, even beyond reliability and noise, our functional results could, along with previous literature, reflect 
the natural day-to-day changes in our brain. Neuroplastic changes in the brain are the hallmark of learning and 
 memory73, and these changes or natural fluctuations and modifications in the neural code74, reflecting learning 
and memory could be reflected in functional connectivity. Indeed, there are many examples of rapid neuroplastic 
changes in the brain that results in functional connectivity changes (e.g., Nierhaus et al., 2019), but see Perich 
et al.76 as an alternative theory. Moreover, in this particular dataset, individuals were recruited to capture sub-
stantial variability in sleep without experimental manipulation. While there is a substantial literature on brain 
related decrements due to sleep  deprivation77,78 little is known about naturalistic fluctuations in  sleep46,79. These 
individuals instead could be more “plastic” (or “stationary”) than other individuals. Future studies will hope-
fully work to disentangle the effects of neuroplasticity from experimental factors that affect reliability estimates. 

fMRI-based analysis has been around for over two decades, but its clinical use has been limited, raising ques-
tions about its usefulness as a diagnostic tool. In addition, given that the effectiveness of any diagnostic tool is 
only as useful as it can be applied to an individual, then in this regard, structural networks should take a more 
prominent role in medicine. Regardless, one must consider how measures of reliability relate to the modality 
being studied, the state of the brain, and the question at hand in order to meaningfully ask questions about how 
brain networks change with disease or how individual differences in structure relate to performance and behavior.

Materials and methods
Participants. The University of California, Santa Barbara (UCSB) Human Subjects Committee (#16-0154) 
and Army Research Laboratory Human Research Protections Office (#14-098) approved all procedures, and all 
participants provided informed written consent. Research was conducted in accordance with the declarations 
of Helsinki. The data presented in this manuscript represent a subset of data collected as part of a large-scale, 
longitudinal experimental that collected bi-weekly structural and functional brain data. A full description of 
the study can be found  in46. Here we analyze data from 27 healthy participants who were recruited by word of 
mouth and local advertisements. Note that by study design, participants were excluded from the multi-session 
segment of the study if they did not experience sleep variability. Data is accessible upon request as far as allowed 
by the security policy and guidelines established with the ethics committee of the US Army Research Laboratory 
Human Research Protection Program.

Data description. Over the course of 16 weeks, subjects were asked to complete 8 recording sessions involv-
ing dMRI and simultaneous EEG-fMRI. For each session, simultaneous EEG-fMRI recording consisted of a 
5-min resting state and 10 tasks with varying levels of cognitive demand; specifically:
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• Dot Probe Task (Dot)80;
• Dynamic Attention Task (DYN 1–4) with four repetitions of the same  task81;
• Modular Math (MOD)82;
• Psychomotor Vigilance Task (PVT)83, and;
• Visual Working Memory (VWM 1–3) with three repetitions of the same  task84.

Table 1 shows the number of subjects and sessions included in the analysis for each imaging modality and 
task. Although 27 participants were included in the data set, not all participants participated in all 8 imaging 
sessions, and some subjects’ fMRI data was excluded due to artifacts. We therefore selected 25 subjects with all 
8 sessions of dMRI data for analysis, and for EEG-fMRI data, we analyzed only six sessions of data in order to 
make a trade-off between maximizing the number of subjects and number of sessions in our data set. As shown 
in Table 2, for the fingerprinting analysis using dMRI data, we again used 25 subjects, all of which had an equal 
number of sessions (8 sessions). For the fingerprinting analysis using fMRI data, 15 subjects were included with 
all 6 sessions of resting-state and task recordings, and for the EEG data, we used 26 subjects with resting-state 
and all tasks over 6 sessions.

fMRI acquisition and preprocessing. Functional neuroimaging data were acquired on a 3 T Siemens 
Prisma MRI using an echo-planar imaging (EPI) sequence (3 mm slice thickness, 64 coronal slices, field of view 
(FoV) = 192 × 192 mm, repetition time (TR) = 910 ms, echo time (TE) = 32 ms, flip angle = 52º, and voxel size: 
3 × 3 × 3 mm). For repeated scans, a T1-weighted structural image was also acquired using a high-resolution 
magnetization prepared rapid acquisition gradient echo (MPRAGE) sequence (TR = 2500 ms, TE = 2.22 ms, and 
FoV = 241 × 241 mm with a spatial resolution of 0.9 × 0.9 × 0.9 mm), for use in coregistration and normalization.
fMRI BOLD images were preprocessed using Advanced Normalization Tools (ANTs)85. Physiological artifacts 
including respiration and cardiac cycle effects were corrected using the retrospective correction of physiologi-
cal motion effects method,  RETROICOR86, implemented in MEAP v1.587. Head motion was estimated using 
antsMotionCorr, and the motion correction was completed as follows: (1) An unbiased BOLD template was 
created within each session by averaging the motion-corrected BOLD time series from each run. (2) The BOLD 
templates were coregistered to the corresponding T1-weighted high resolution structural images, collected in 
each session. (3) Each session was spatially normalized to a custom study-specific multi-modal template which 
included T1-weighted, T2-weighted and GFA images from twenty-four quasi-randomly selected participants 
chosen to match the study population. (4) The template was then affine-transformed to the coordinate space of 
the MNI152 Asymmetric template. (5) Finally, the fMRI volumes were transformed using the estimated head 
motion correction, BOLD template coregistration, BOLD-to-T1w coregistration and spatial normalization into 
MNI space using a single Hamming weighted sinc interpolation. After these transformations, the final step in the 
preprocessing was to extract time-series from fMRI scans for functional connectivity analyses. Two atlases were 
used to reduce the 3D volume data into 221 nodal time series data: (1) the cortical Schaefer 200  atlas88 which 
was derived from intrinsic functional connectivity in resting state fMRI and (2) 21 subcortical regions from the 
Harvard–Oxford atlas based on anatomical  boundaries89. As the atlases are in MNI coordinate space, voxels 

Table 1.  Number of subjects, sessions, task length, and inter-session interval.

Task dMRI subject EEG subject fMRI subject Session Time (min) Interval (days) Bad channels

n/a 25 n/a n/a 8 n/a 14 n/a

Resting-state n/a 27 26 6 5 14 6.7

DOT n/a 27 25 6 14 14 7.5

DYN-1 n/a 27 27 6 5 14 6.6

DYN-2 n/a 27 27 6 5 14 6.5

DYN-3 n/a 27 26 6 5 14 6.5

DYN-4 n/a 27 20 6 5 14 6.5

MOD n/a 27 17 6 14 14 8.2

PVT n/a 27 19 6 12 14 7.5

VWM-1 n/a 27 27 6 6 14 6.6

VWM-2 n/a 27 23 6 6 14 7.3

VWM-3 n/a 27 17 6 6 14 7

Table 2.  Number of subjects and sessions for fingerprinting analysis.

Modality Subjects Sessions Task included

dMRI 25 8 n/a

fMRI 15 6 Yes

EEG 27 6 Yes
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within each labelled region of the atlases were simply averaged, and time series were extracted for the following 
connectivity analyses.

To assess functional connectivity among ROIs, mean regional time-courses were extracted and standardized 
using the nilearn  package90 in Python 2.7, and confound regression was then conducted. In particular, the time 
series for each region was detrended by regressing the time series on the mean as well as both linear and quadratic 
trends. There were a total of 16 confound regressors, which included: head motion, global signal, white matter, 
cerebrospinal fluid and derivatives, quadratics and squared derivatives. This functional connectivity preprocess-
ing pipeline was selected based on conclusions from prior work that examined performance across multiple com-
monly used preprocessing pipelines for mitigating motion artifact in functional BOLD connectivity  analyses48,91.

To construct the fMRI networks, the signal from all voxels within a brain region were averaged, and the 
Pearson Product Correlation (R) between two brain regions was calculated as

where x and y represent the time-series data from two different regions and σ is the variance of the time series. 
To account for negative correlations, the absolute value of the correlations was used to construct weighted func-
tional connectivity matrices.

EEG acquisition and preprocessing. Continuous EEG recordings were captured simultaneously with 
an fMRI-compatible EEG equipped with standard Ag/AgCI electrodes from 64 sites on the scalp oriented in a 
10–20 scheme system (Brain Products, Gilching, Germany). Initial fMRI pulse and ballistocardiographic artifact 
correction was completed in BrainAnalyzer 2 (Brain Products, Gilching, Germany) using classic subtraction 
and filtering  approaches92,93. These mid-level processed EEG measurements were then further processed using 
in-house software in MATLAB (Mathworks, Inc., Natick, MA, USA) and the EEGLAB  toolbox94,95. Despite the 
subtraction and filtering approaches applied, residual artifact from the fMRI pulse persisted. To remove these 
lingering artifacts, we developed a new cleaning pipeline.

Our cleaning pipeline included steps tailored to remove common EEG artifact (e.g., eye blinks, muscle-related 
activity) and then targeted the high frequency noise in the 16–19 Hz and 34–38 Hz range. EEG data were band-
pass filtered between 0.75 and 50 Hz using a Finite Impulse Response (FIR) filter. Next, EEGLAB’s automated 
clean_rawdata function was used to determine channels that differed substantially from the estimated signal 
(derived from other channels) or had consistent flat-lining. Then, the EEG data were subjected to an Independent 
Component Analysis (ICA) decomposition and the ADJUST  algorithm96 was used to remove ICA components 
associated with stereotyped noise. Following ICA decomposition, bad channels were interpolated using spherical 
interpolation. As a final step in EEG preprocessing, the EEG data were subjected to Artifact Subspace Recon-
struction (ASR)97,98, which we used to target the aforementioned residual high frequency noise from the fMRI 
artifact. This method, in combination with the ICA cleaning method allows for the targeting of both stationary 
and non-stationary persistent artifacts. To deploy ASR on the dataset, we first created a “clean” reference signal 
from each subject’s EEG data by: 1) concatenating EEG segments that were at least 1000 ms long with amplitude 
below 100 µV, (2) and notch filtering (FIR) the EEG between 16–19 and 34–38 Hz. Following the creation of 
the reference signal, ASR was then used to reconstruct the EEG that contained large fluctuations greater than 
5 standard deviations beyond the reference signal (in 500 ms chunks). Lastly, the data were re-referenced to a 
common average reference.

To construct EEG networks, the signal from each sensor was separated into standard frequency bands cor-
responding to δ (1–3 Hz), θ (4–7 Hz), α (8–13 Hz), β (15–30 Hz) and γ (30–60 Hz) with a Butterworth filter 
(8th order) followed by Hilbert transformation. Weighted functional connectivity adjacency matrices were con-
structed for each frequency band using the de-biased weighted phase-lag index (dwPLI)47. Each node in the 
adjacency matrix corresponds to a channel with the weight representing the strength (phase-lag) of the connec-
tion. Specifically, dwPLI is calculated as,

where I(Xi) corresponds to the imaginary component of time series data (X) from channel i. Thus, dwPLI is the 
sum of all pairwise products of the magnitudes of the imaginary components and accounts for any bias due to 
the number of data points.

dMRI acquisition and preprocessing. Diffusion spectrum imaging (DSI) scans were acquired for each 
session. DSI scans sampled 258 directions using a Q5 half-shell acquisition scheme with a maximum b-value of 
5000 and an isotropic voxel size of 2.4 mm. Minimal preprocessing was carried out on the DSI scans and was 
restricted to motion correction. Following a similar procedure to the fMRI motion correction, motion was first 
assessed and applied for all of the b0 volumes, and a template was created for each scan composed of the average 
of the b0 volumes. Next, the b0 volumes and vectors were transformed using the estimated head motion correc-
tion, b0 template coregistration, b0 template-to-T1w coregistration and spatial normalization into MNI space 
using a single Hamming weighted sinc interpolation.

Fiber tracking was performed in DSI Studio (www. dsi- studio. labso lver. org) with an angular cutoff of 35°, 
step size of 1.0 mm, minimum length of 10 mm, spin density function smoothing of 0, and a maximum length 
of 250 mm. Deterministic fiber tracking was performed until 500,000 streamlines were reconstructed for each 

(1)R =
cov(x, y)
√
σxσy

,

(2)dwPLI =
∑N

i=1

∑

j �=iI(Xi)I(Xj)
∑N

i=1

∑

j �=i|I(Xi)I
(

Xj

)

|
,
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session. As with the fMRI volume data, streamline counts were estimated in 200 nodes using the same Schaefer 
200  atlas88 and 21 subcortical regions part of the Harvard–Oxford  atlas89. Connectivity matrices were then 
normalized by dividing the number of streamlines (T) between region i and j, by the combined volumes (v) of 
region i and j,

Graph theoretical analysis. We calculated nine commonly used and diverse graph metrics on each 
weighted dMRI, fMRI and EEG network. The graph metrics are: degree, clustering coefficient, characteristic 
path length, small-world propensity, global and local efficiency, synchronizability, spectral radius, and eigenvec-
tor centrality. See supplemental for detailed description of each network measure.

Degree. The weighted node degree (ki) is defined as the sum of all connections of a  node99,

where W is the weighted adjacency matrix of a network with N nodes.

Clustering coefficient. The weighted clustering coefficient (C) for node i is the intensity of triangles in a 
 network100 and is calculated as,

where W is the weighted adjacency matrix and b is the number of edges for node i.

Characteristic path length. The characteristic path length (L) is the average shortest path length between 
all  nodes99,

where dwij  is the is the distance between nodes i and j. To calculate dwij  , we first take the inverse of the edge weights 
to transform the weight to a measure of length (i.e., to transform a strong connection strength to a short length). 
We then determine the shortest path between nodes i and j (using the inverted weights), and dwij  is the sum of 
the inverse of the edge weights along this shortest path.

Small‑world propensity. Small-world propensity (φ) quantifies the extent to which a network displays 
small-worldness, a network property that combines the presence of local clustering with a short path length, 
while factoring in variation in network  density101. Small-worldness is calculated as,

where Cobs is the observed clustering coefficient and Lobs is the observed characteristic path length of the net-
work; Clatt, Llatt, Crand, and  Lrand are clustering coefficient and characteristic path length from lattice and random 
networks with the same number of nodes and edge distribution.

Global and local efficiency. The efficiency of a node is the inverse of the path  length99. Global efficiency 
(Eg) is the inverse shortest path length,

where dwij  is the previously defined distance between node i and j.
Local efficiency (El) is the global efficiency computed on the neighborhood of node i,

(3)Wij =
Tij

vi + vj
.

(4)ki =
∑

j∈N
Wij ,

(5)Ci =
1
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where wij and wih is strength of the connection between node i to j and h, respectively, and djh (Ni) is the length 
of the shortest path between nodes j and h that contains only neighbors of node i.

Synchronizability. Synchronizability is a measure of linear stability for a network of coupled dynamical 
 systems102,

where λ2 is the second smallest eigenvalue of the unnormalized Laplacian matrix (L) and λn is its largest eigen-
value. The Laplacian is calculated as,

where D is the degree matrix of the weighted adjacency matrix, W.

Spectral radius. The spectral radius measures the ease with which diffusion process can occur in a network. 
The spectral radius is calculated as,

where |λ| corresponds to the absolute value of the eigenvalues of a network.

Eigenvector centrality. Eigenvector centrality (ECi) measures how influential a node is in a network, with 
a high value indicating a node is connected to other highly influential  nodes103. The eigenvector centrality of 
node i is given by the i-th entry in the dominant eigenvector, which is the vector v = [v1,…vN] that solves

where �1 is the largest eigenvalue of the weighted adjacency matrix, W.

Intra‑class correlation. The intra-class correlation (ICC) is a measure used to quantify the test–retest reli-
ability of a measure. We used the ICC to measure the consistency of individual connections across the dMRI, 
fMRI and EEG networks and across the graph metrics for each network. To accomplish this, we calculated two 
variants of the ICC, the within  (ICCw)- and between  (ICCb)-subjects104.  ICCw and  ICCb are, respectively, calcu-
lated as,

where I is the number of subjects and J is the number of sessions, SMS, RMS and EMS represent the ANOVA 
measures of mean square error between sessions, subjects, and due to error, respectively. The reliability of a 
measurement is considered: (1) “poor” if the ICC values is less than 0.4; (2) “fair” for ICC values between 0.4 
and 0.6; (3) “good” for ICC values between 0.6 and 0.8; and (4) “excellent if ICC values exceed 0.8.

Fingerprinting analysis. To perform a fingerprinting analysis, as in Finn et al., 2015, we quantified the 
degree of similarity between networks. This analysis was performed separately for each of the dMRI, fMRI and 
EEG modalities. For each individual, connectivity matrices were converted for each individual and run into a 
vector using the values from the upper triangle of the matrix resulting in vectors of 1 × 24,310 for dMRI and 
fMRI, and 1 × 2016 for EEG. Thus, each vector, p, represents a single connectivity matrix for a given subject dur-
ing a given session, and for functional matrices, in a given state (task/rest).

Next, separately within each modality, for each connectivity matrix (representing a subject, session, and 
state), we calculated the pairwise similarity between two vectors, p and q, using the Euclidian distance to create 
a dis-similarity matrix (D), where

and each entry in Dpq, corresponds to the dis-similarity between the brain network p to q. However, since the 
Euclidian distance formally assesses dis-similarity and we were interested in evaluating similarity, we converted 
from a dis-similarity to a similarity (S) measure by

(11)El =
1

N

∑

i∈N

∑

j,h∈N ,j �=i(wijwih[dwjh(Ni)]−1)1/3

ki(ki − 1)
,

(12)S =
�2

�n
,

(13)L = D −W ,

(14)ρ(W) = max{|�1|, . . . , |�n|},

(15)�1v = WvT ,

(16)ICCw =
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J ∗ SMS + I ∗ RMS + (IJ − I − J)EMS
,

(17)ICCb =
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,
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,
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where max(D) corresponds to the largest value in matrix D. This normalization ensures that the similarity matrix 
S ∈ [0 1].

In order to perform a fingerprinting analysis, for each vector, p, we then looked for the entry Spq with the high-
est similarity value. If for this entry, the vectors p and q were from the same individual (but could be from differ-
ent sessions or states), then the fingerprinting analysis was classified to be successful at identifying the individual.

Fingerprinting performance for each imaging modality was assessed using two measures. The first measure 
quantifies the overall fingerprinting accuracy across subjects and was calculated as the percentage of matrices 
which were successful in identifying an individual. While this measure is useful from a classification standpoint, 
we were also interested in the level of separation between matrices within versus between individuals. Therefore, 
in the second measure, we assessed the separability (T) of each modality. The separability of each matrix,  Tp, 
was defined to be

where the first term is constrained to q from the same subject as p, and the second term is constrained to q from 
all subjects other than p. The resulting values of T ∈ [− 1 1], where a value of 1 indicates perfect similarity within 
a subject across sessions and no similarity to other subjects and, conversely, -1 indicates no similarity across 
runs within a subject.

Statistical tests. Analysis of variance (ANOVA) was used to quantify the magnitude difference in ICC 
scores and the difference in the magnitude of the network similarity. Corresponding p-values were corrected 
for multiple comparison using Bonferroni correction. The Brain Connectivity Toolbox was used to calculate 
network  measures99. All analyses were conducted in MATLAB 2017b.

Data availability
Data is available upon reasonable request to the corresponding authors and consequent approval by the US 
DEVCOM Army Research Laboratory and University of California, Santa Barbara.
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