
 

Research Articles | Systems/Circuits   
Cardiac-sympathetic contractility and neural alpha-band
power: cross-modal collaboration during approach-
avoidance conflict 
 

https://doi.org/10.1523/JNEUROSCI.2008-23.2024
 
Received: 24 October 2023
Revised: 9 August 2024
Accepted: 26 August 2024
 

Copyright © 2024 the authors

This Early Release article has been peer reviewed and accepted, but has not been through
the composition and copyediting processes.The final version may differ slightly in style or
formatting and will contain links to any extended data.

Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully
             formatted version of this article is published.

https://www.jneurosci.org/alerts
https://doi.org/10.1523/JNEUROSCI.2008-23.2024
https://doi.org/10.1523/JNEUROSCI.2008-23.2024


 

 

1 

Cardiac-sympathetic contractility and neural alpha-band power: cross-modal 1 

collaboration during approach-avoidance conflict 2 

 3 

Abbreviated title: Contractility-alpha interactions in approach-avoidance 4 

 5 

Neil M. Dundon*,1,2, Alexander Stuber1,5, Tom Bullock1,5, Javier O. Garcia3, Viktoriya 6 

Babenko1,5,7, Elizabeth Rizor1,5,6, Dengxian Yang4,5, Barry Giesbrecht1,5,6, Scott T. Grafton1 
7 

 
8 

1Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 9 

93106, U.S.A. 10 

2Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, 11 

University of Freiburg, 79104 Freiburg, Germany 12 

3 Humans in Complex Systems Division, US DEVCOM Army Research Laboratory, Aberdeen 13 

Proving Ground, MD 21005, U.S.A. 14 

4Department of Computer Science, University of California, Santa Barbara, CA 93106, U.S.A. 15 

5Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, 16 

U.S.A. 17 

6Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, 18 

Santa Barbara, CA 93106, U.S.A. 19 

7BIOPAC Systems Inc., Goleta, CA 93117, U.S.A. 20 

 21 

JN
eurosci

 Acce
pted M

an
uscr

ipt



 

 

2 

Correspondence: neil.dundon@psych.ucsb.edu 22 

The authors declare no financial interests nor conflicts of interest. 23 

Abstract 24 

 25 

As evidence mounts that the cardiac-sympathetic nervous system reacts to challenging cognitive 26 

settings, we ask if these responses are epiphenomenal companions or if there is evidence 27 

suggesting a more intertwined role of this system with cognitive function. Healthy male and female 28 

human participants performed an approach-avoidance paradigm, trading off monetary reward for 29 

painful electric shock, while we recorded simultaneous electroencephalographic (EEG) and 30 

cardiac-sympathetic signals. Participants were reward sensitive, but also experienced approach-31 

avoidance "conflict" when the subjective appeal of the reward was near equivalent to the revulsion 32 

of the cost. Drift-diffusion model parameters suggested that participants managed conflict in part 33 

by integrating larger volumes of evidence into choices (wider decision boundaries). Late alpha-34 

band (neural) dynamics were consistent with widening decision boundaries serving to combat 35 

reward-sensitivity and spread attention more fairly to all dimensions of available information. 36 

Independently, wider boundaries were also associated with cardiac "contractility" (an index of 37 

sympathetically mediated positive inotropy). We also saw evidence of conflict-specific 38 

"collaboration" between the neural and cardiac-sympathetic signals. In states of high conflict, the 39 

alignment (i.e., product) of alpha dynamics and contractility were associated with a further 40 

widening of the boundary, independent of either signal's singular association. Cross-trial 41 

coherence analyses provided additional evidence that the autonomic systems controlling cardiac-42 

sympathetics might influence the assessment of information streams during conflict by disrupting 43 

or overriding reward processing. We conclude that cardiac-sympathetic control might play a 44 
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critical role, in collaboration with cognitive processes, during the approach-avoidance conflict in 45 

humans. 46 

 47 

Significance statement 48 

Complex behavior likely involves coordination across multiple branches of the human nervous 49 

system. We know much of how cortical systems of the brain adapt to cognitive challenges. In 50 

parallel, we are beginning to understand that autonomic mediated responses in peripheral 51 

organ (cardiac-sympathetic) systems might also play an adaptive role in cognition, particularly 52 

complex decisions. We probed if such signals have separate or collaborative associations with 53 

behavior, using computational models of decision behavior, brain (electroencephalography) and 54 

cardiac-sympathetic (contractility) data. Our evidence suggests that these systems might work 55 

together, as humans attend to all available information when resolving particularly conflicting 56 

decisions. The cardiac-sympathetic system may be part of a coordinated response that helps 57 

balance the human tendency to overly focus on rewards. 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 
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 67 

 68 

 69 

Introduction 70 

 71 

Our nervous system and coupled body evolved together to be flexibly responsive, allowing rapid 72 

and often anticipatory changes to meet a broad array of cognitive and physical challenges 73 

presented in dynamic environments. Decades of research in cognitive neuroscience have 74 

characterized flexible cognitive mechanisms and underlying cortical systems for preserving goal-75 

directed function when external circumstances change. Meanwhile, autonomic reactivity in 76 

peripheral organ systems, such as the cardiac-sympathetic branch, is well documented in tasks 77 

requiring momentary goal-directed changes in mental and physical exertion, showing appropriate 78 

reactivity (just enough, just in time) to tasks at hand (Richter et al., 2008; Richter et al., 2016; 79 

Stump et al., 2023). More recent evidence extends cardiac-sympathetic reactivity to complex 80 

cognitive  81 

challenges such as value-based decision making (Dundon et al., 2020, 2021). However, it 82 

remains unclear whether these peripheral responses are independent of cortically mediated 83 

cognition or if the regulatory systems controlling these responses are more integrally involved in 84 

cognitive processes. A crucial next step is to therefore pinpoint the specific cognitive mechanisms 85 

that the cardiac-sympathetic system aligns with.  86 

 87 

Emerging event-related evidence suggests cardiac-sympathetic reactivity might be particularly 88 

relevant in value-based situations that involve some manner of "conflict" and where decisions 89 
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must incorporate negative information or costs (Ogden et al., 2019; Dundon et al., 2020; Dundon 90 

et al., 2021). While such a reactivity profile could be epiphenomenal, it is also consistent with a 91 

broader literature showing sympathetic involvement when humans face increasing uncertainty 92 

(Palacios-Filardo and Mellor, 2019) and difficulty (Richter et al., 2008), or a requirement to explore 93 

alternative goal-relevant stimuli (Aston-Jones and Cohen, 2005) with a specific emphasis on 94 

incorporating negative information (Garrett et al., 2018). Together, these findings suggest cardiac-95 

sympathetic reactivity reflects a process that may be centrally generated and part of a coordinated 96 

response that helps balance the human tendency to overly focus on rewards (Garrett et al., 2014; 97 

Sharot and Garrett, 2016; Pedersen et al., 2021). However, to date, no study has tracked the 98 

computational-behavioral and neural processes relevant for value-based conflict and reward 99 

sensitivity, and thereafter probed whether reactivity in cardiac-sympathetics is independently or 100 

collaboratively associated with behavior or cortical activity. 101 

 102 

In the present work we therefore use a modified version of the approach-avoidance paradigm 103 

(Champion, 1961; Elliot and Thrash, 2002). This paradigm creates states of high "conflict" when 104 

the appeal of a reward is near equivalent to the revulsion of a cost (Figures 1A–B). It can also 105 

identify sensitivity toward a particular value dimension, such as reward sensitivity (Volz et al., 106 

2017; Shapiro and Grafton, 2020; Pedersen et al., 2021; Figure 1C). We configured the paradigm 107 

to additionally record how neural perceptual signals measured by electroencephalography (EEG) 108 

track reward and cost information, specifically sensory gain (steady-state visually evoked 109 

potentials; SS; Pfurtscheller and Aranibar, 1977; Galloway, 1990; Müller et al., 1998; Müller et al., 110 

2006; Gulbinaite et al., 2019) and goal-directed attention (spatially responsive dynamics in the 111 

alpha band; Foxe and Snyder, 2011; Klimesch, 2012; Wang et al., 2016). We simultaneously 112 

recorded beat-by-beat estimates of contractility (inotropy), which is primarily mediated by 113 

noradrenergic sympathetic drive (after adjusting for heart and respiratory rate) and associated 114 
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with cardiac reactivity to challenge (Lewis et al., 1974; Light, 1985; Linden, 1985; Newlin and 115 

Levenson, 1979; Sherwood et al., 1986, 1990; Callister et al., 1992). To further decompose 116 

behavior, and extract fine-grained assays of behavior to correlate with physiology signals, we 117 

fitted the drift-diffusion model (DDM) to choice and response time (RT) data (Figure 1D). Initially 118 

considered in perceptual contexts (Usher and McClelland, 2001; Ratcliff and McKoon, 2008; 119 

Forstmann et al., 2016), parameters from the DDM are an increasingly useful tool for 120 

disambiguating the underlying reasons for lengthier RT in more complex value-based contexts 121 

(Peters and D’Esposito, 2020; Shahar et al., 2019; Ballard and McClure, 2019; Colas, 2017; 122 

Fontanesi et al., 2019; Dundon et al., 2023; Figure 1D). 123 

 124 

[Figure 1 here] 125 

 126 

Our primary aim was to establish how human participants respond to conflict at the computational-127 

behavioral level. We thereafter tested if cardiac-sympathetics are associated with relevant DDM 128 

parameters in a manner that suggests redundancy (i.e., epiphenomenal), independent function 129 

or collaboration (i.e., interaction) with perceptual neural signals. In particular, we examined if 130 

cardiac-sympathetics aligned with neural processes associated with reward sensitivity, i.e., 131 

increased gain of or attention toward either cost information or more symmetric processing of 132 

reward and cost. 133 

 134 

 135 

Materials and Methods 136 

 137 
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We recorded continuous multi-channel electroencephalography and cardiac-sympathetic 138 

physiology (combined electrocardiography and impedance cardiography) while human 139 

participants made approach-avoidance choices regarding offers that varied trial-by-trial in reward 140 

and in cost. Each "take-it-or-leave-it" trial offer gradually presented a monetary reward ranging in 141 

value from $0.01 to $1.50 and a shock cost ranging in value from minimal to near maximum 142 

bearable pain (see trial schematic in Figure 2A). We configured the paradigm to additionally 143 

record how EEG signals track reward and cost information, both in terms of sensory gain (steady-144 

state visually evoked potentials; Figure 3A) and goal-directed attention (spatially responsive 145 

dynamics in the alpha band; Figure 3B). We additionally divided neural assays into early and late 146 

time windows, to capture the dynamics of conflict as decisions unfold, given recent evidence that 147 

they might be time-sensitive Shapiro and Grafton (2020). 148 

 149 

Participants 150 

We recruited an initial sample of 33 human participants, via both word-of-mouth and an online 151 

participant recruitment portal operated by the University of California, Santa Barbara (UCSB). We 152 

removed six participants from all analyses: One subject accepted more than 90% of offers, two 153 

participants’ EEG data had an artefact in more than 50% of epochs, and one further subject 154 

satisfied both screening criteria. In addition, we removed two participants due to excessive noise 155 

in their impedance cardiography data. We accordingly report findings from a final sample of 27 156 

participants. This group had a mean (standard deviation) age of 21.4 (3.3), and 17 were female. 157 

All participants were right-handed and attested to no history of cardiovascular or related diseases. 158 

Subject remuneration was $20 per hour base rate, with a bonus payment determined by their 159 

approach-avoidance behavior, which approximately corresponded to an additional $13.50 per 160 

subject. All testing took place during a single session in a quiet, dimly lit experimental suite and 161 
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all procedures received approval from the Institutional Review Board at UCSB. Participants 162 

provided informed written consent, prior to participating. 163 

 164 

Approach-avoidance paradigm 165 

Overview. We used a modified version of the approach-avoidance task previously employed in 166 

nonhuman primate (Amemori and Graybiel, 2012, 2015) and human (Volz et al., 2017; Shapiro 167 

and Grafton, 2020; Dundon et al., 2021) experiments. The main modification was the 168 

incorporation of reward and cost stimuli with different frequency flicker rates and spatial 169 

positioning to facilitate identification of specific cortical activity. Stimuli also appeared gradually 170 

on each trial, to facilitate identification of early and late responses. (O'Connell et al., 2012). Similar 171 

to prior studies, participants approached or avoided varying levels of monetary reward paired with 172 

varying levels of painful electric shock, in trial-by-trial "take-both-or-leave-both" offers. Participants 173 

made a total of 352 approach-avoidance choices (split into eight blocks of 44). Their head position 174 

was fixed by an adjustable chin and forehead rest, to maintain a viewing distance of 57 cm from 175 

the stimulus presentation screen: an ASUS VS278 monitor, viewing area 60 cm width by 33.5 cm 176 

height, refresh rate of 240 Hz (inter-frame interval=.004 s). We advised participants to move their 177 

bodies as little as possible, to prevent motion-related confounds entering the physiology 178 

recordings.  179 

 180 

Trial structure. Each approach-avoidance trial gradually presented an offer to participants, in 181 

which two bars communicating the level of reward and cost slowly appeared. Responses were 182 

recorded with button press. The trial schematic is depicted in Figure 2A. During each trial, 183 

participants fixated their eyes on a central point (RGB[min=0,max=1]=[.750 .750 .750]; 184 

diameter=0.221°). The background color remained black (RGB[min=0,max=1]=[0 0 0]) at all times, 185 
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except for payout trials (see below). Offers comprised four sequential events: (i) baseline, (ii) offer 186 

onset, (iii) offer offset and (iv) feedback. (i) Each offer initiated with a baseline period with a 187 

duration between 420 and 540 frames (inclusive) drawn with discrete uniform probability on each 188 

trial (approx. 1.75 s to 2.25 s). Baseline onset was signified by the immediate appearance of two 189 

vertically oriented rectangular dot arrays, each spanning 7.30° width by 27.8° height, comprised 190 

of 79 columns and 322 rows of dots (dot diameter=.056°), with centroids positioned at a horizontal 191 

eccentricity +/- 3.75° from the central fixation point. (ii) Following baseline, during offer onset, the 192 

offer bars gradually communicated the magnitude of the offer’s value dimensions, with one bar 193 

communicating the level of offered reward and the other bar communicating the level of incurred 194 

shock. We drew a different offer on each trial from a two-dimensional decision (reward-by-shock) 195 

space with uniform probability, and communicated the magnitude of each dimension by gradually 196 

filling in an area of both bars with a relevant offer color (khaki or blue; one color per offer bar). 197 

Specifically, contiguous rows of dots, equally portioned above and below the centroid of each 198 

offer bar, gradually changed into one of two offer colors. The number of rows changing into an 199 

offer color indicated the magnitude offered in that dimension, i.e., the offered reward (no rows: 200 

$0.01, to all rows: $1.50) and the offered shock (no rows: minimum pain, to all rows: maximum 201 

bearable pain—see "costs" section below). Counterbalanced across participants, reward and 202 

shock mapped onto one color for the entire experiment, while color laterality was determined with 203 

0.50 uniform probability before each trial. Offer onset duration was four seconds, with color 204 

change controlled by reward and shock gradients that respectively changed dot colors from 205 

baseline grey (RGB[min=0,max=1]=[.375 .375 .375]) to peak offer color (khaki, RGB[min=0,max=1]=[.632 206 

.586 .351]; blue, RGB[min=0,max=1]=[.328 .616 .375]) at even step sizes in RGB space over the offer 207 

onset frames (n=960). (iii) Following peak onset, during offer offset, offer colors gradually returned 208 

to baseline grey over a two-second period. We instructed participants to respond as soon as they 209 

decided whether to approach or avoid an offer, with a time limit of the end of offer offset. 210 
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Participants registered their responses by pressing z with the index finger of their left hand, or m 211 

with the index finger of their right hand. The mapping of z and m onto approach and avoidance 212 

responses was fixed for each block of 44 trials, determined prior to the block with 0.50 uniform 213 

probability. (iv) Following offer offset, participants observed a feedback screen for one second 214 

(nine seconds for payout trials, see below). As depicted in the lower portion of Figure 2A, a 215 

"successful" response, i.e., a single response executed during offer onset or offset, led to a 216 

confirmation feedback screen containing a snapshot image of the offer (at peak offer colors), 217 

accompanied by a written confirmation of their choice. If participants responded more than once, 218 

responded during the baseline (pre-onset), or failed to execute any response before the final 219 

frame of offer offset, a warning appeared on the screen indicating the relevant error, along with 220 

the lateralized response prompts (lower portion of Figure 2A). We stored all error trials and 221 

reissued them to participants after the eighth block, to ensure that errors could not be a strategy 222 

to circumvent specific offers. All feedback screens (successful, error or payout (below)) also 223 

included prompts to remind participants which colors mapped onto the different reward 224 

dimensions (indicated with a lightning bolt (shock) or dollar symbol (reward) overlaying the 225 

relevant bar), and which button response mapped onto which choice for the given block. This 226 

screen was also displayed prior to each block. Finally, offer bars flickered throughout each trial, 227 

either left: 12 Hz, right: 13.33 Hz or vice versa, determined with 0.50 uniform probability. We 228 

presented all stimuli with customized scripts in MATLAB (Version 2018a, The Mathworks Inc., 229 

Natick, MA, USA, https://www.mathworks.com/products/matlab.html) using functions from 230 

PsychToolbox-3 (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). Successfully registered choices 231 

were coded either 1 (approach) or 0 (avoid), and response time (RT) was the time (in seconds) 232 

between offer onset and choice execution. 233 

 234 
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Costs: Shocks offered to each participant were calibrated a priori in order to range in pain from 235 

an individualized subjective minimum to near-maximum level. We administered the costs with 236 

cutaneous electrical stimulation (1 s duration; f=100 Hz; λ=2 ms), via two electrodes on the back 237 

of the hand. We used a constant current stimulator and train generator (respectively, models 238 

DS7A and DG2A, Digitimer, Great Britain), and modulated pain via voltage. We used an identical 239 

calibration procedure to previous studies (Shapiro and Grafton, 2020; Dundon et al., 2021). That 240 

is, we started 1 mV and gradually increased voltage until participants reported (1) a perception of 241 

the shock, then (2) when the voltage began to cause discomfort, and then finally (3) when the 242 

voltage caused unbearable pain. Once a level of unbearable pain was reported, we asked them 243 

to confirm that this was the maximum pain they could tolerate. This prompt usually spurred 244 

participants to accept a further increase in voltage. Once they confirmed reaching an unbearable 245 

level of pain, we administered 14 sample shocks, ranging in voltage between (2) and (3) above, 246 

and participants reported the level of pain on a scale of 0 to 10. We repeated this entire procedure 247 

twice to account for habituation. Shocks offered to each participant then ranged from a lower 248 

bound of (2) above to an upper bound of the second estimate of (3) above. We also fitted a 249 

sigmoid function to the second set of pain ratings, to first estimate shocks of 0.05, 0.25, 0.50, 250 

0.75, and 0.95 intensity (as per their individualized scales) to provide as sample shocks. We also 251 

estimated where their 0.80 level of pain was and excluded trials offering pain equal or greater to 252 

this level from payout trials (see below). 253 

 254 

Payout trials. For safety reasons, we did not administer any electric shocks during the testing 255 

session while participants wore physiology electrodes. We instead postponed payout on an 256 

infrequent subset of trials, in line with previous work recording physiology signals during similar 257 

approach-avoidance paradigms (Shapiro and Grafton, 2020; Dundon et al., 2021). Prior to testing, 258 

we selected eighteen "payout trials" (5.11%) with uniform probability across the entire set of offers, 259 
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provided the offered shock was below 80% of a subject’s maximum pain level. The baseline, 260 

onset and offset sequence of payout trials were identical to non-payout trials. However, during 261 

the feedback section of payout trials (extended from one to nine seconds), the screen changed 262 

from black to red (RGB[min=0,max=1]=[1 0 0]; left lower portion of Figure 1C) and participants learned 263 

that the monetary reward and shock from that offer would be administered following the testing 264 

session (were that offer approached) or that the values would have been administered (were that 265 

offer avoided). If participants made a response error during a payout trial, they instead saw the 266 

error feedback screen, and the payout trial was added to the list of trials to be reissued. We 267 

instructed participants that payout trials could not be predicted before registering a response and 268 

to treat each offer as a potential payout trial. Previous work reports that payout trials do not affect 269 

behavior on subsequent choices (Shapiro and Grafton, 2020; Dundon et al., 2021). 270 

 271 

Paradigm configuration for perceptual signals. We configured the paradigm to record how neural 272 

perceptual signals measured by EEG track reward and cost information, both in terms of sensory 273 

gain (steady-state visually evoked potentials; Figure 3A) and goal-directed attention (spatially 274 

responsive dynamics in the alpha band; Figure 3B). The former was achieved by flickering the 275 

offer bars throughout each trial, one at 12 Hz, the other at 13.33 Hz. This meant that each trial 276 

had a unique frequency "tag" associated with reward and cost. For the latter, we lateralized the 277 

reward and cost stimuli to exploit spatially responsive alpha dynamics. For the specific filtering 278 

procedure in each case, see the Neural recordings section below. 279 

 280 

Behavioral analyses 281 

Overview. We performed initial behavioral analyses to evaluate whether participants were reward 282 

sensitive in addition to whether they confronted approach-avoidance "conflict" in established 283 
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regions of decision space when performing our task. To conform with previous studies, we used 284 

a logistic framework employing maximum-likelihood methods to compute subjective value and all 285 

related measurements. All other modeling and statistical tests were performed using hierarchical 286 

Bayesian models, in which posteriors were sampled and model fits computed using a combination 287 

of HDDM (Wiecki et al., 2013) and pymc3 functions (Salvatier et al., 2016) in Python. 288 

 289 

Logistic choice models. We used a logistic framework previously reported (Shapiro and Grafton, 290 

2020; Dundon et al., 2021). This framework fits two-dimensional logistic models separately to 291 

each individual subject’s set of choices (Y), modeling p(approach) as a function of the 292 

corresponding set of rewards (X1) and shock costs (X2) offered, with a standard logit function, 293 

i.e.:  294 

 295 

Y=logit-1(b0+b1*X1+b2*X2). 296 

[Eq. 1] 297 

 298 

We estimated the maximum likelihood parameters of each participant's model using the mnrfit 299 

function in MATLAB after first normalizing X1 and X2 to z-score ranges within participants. 300 

 301 

Reward sensitivity in approach-avoidance contexts is demonstrated by choices that overweight 302 

the reward relative to the offered costs (Figure 1C). In our paradigm we uniformly sampled the 303 

reward and cost dimensions, the latter of which was calibrated to span an individualized minimum 304 

to maximum (see above section on "Costs" in the section describing the paradigm). We 305 

accordingly deduce that participants were reward sensitive within this task context if their logistic 306 
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choice coefficients (from Eq. 1) showed a bias toward approach (b0>0) or an overweighting of the 307 

reward coefficient (|b1|>|b2|). 308 

 309 

Approach-avoidance conflict is highest near the region of decision space where participants are 310 

as likely to approach as they are to avoid (Figure 1A). We assessed the level of conflict presented 311 

by each trial, accounting for individual differences in subjective valuations, using a previously 312 

employed procedure (Shapiro and Grafton, 2020; Dundon et al., 2021). The method uses discrete 313 

classification, categorizing trials as either high or low in conflict. For this, from the coefficients of 314 

each participant's logistic choice model (from Eq. 1), we first computed the subjective value (the 315 

log odds of approach) of each trial as SVk=b0+b1*x1k+b2*x2k, where x1k and x2k are respectively 316 

the reward and cost offered on trial (k), normalized to z-score ranges within participants. In this 317 

way SV>0 reflects p(approach)>0.50 and vice-versa. We then classified a trial as high conflict if 318 

it was either (a) approached, but where its SVk was below the median SV of all approached trials, 319 

or (b) avoided, but where its SVk was above the median SV of all avoided trials. These trials are 320 

depicted schematically by the fuchsia regions in Figure 1. All remaining trials were classified as 321 

low conflict, depicted by the aqua regions in Figure 1. For each trial, its SV and its binary degree 322 

of conflict (high vs low) were estimated prior to any screening due to EEG or sympathetic artefact, 323 

described in the section below. 324 

 325 

We performed additional tests to support that the logistic framework had identified states of high 326 

and low conflict. One indication of high conflict is a reduction in choice "consistency". For this, we 327 

used a nonparametric assessment of the deviation in choices appearing in bins of the decision 328 

space. We divided each participant's decision space into a ten-by-ten grid of equal bins. We 329 

enumerated choice consistency for a given bin as the variance in choices across all offers 330 
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appearing in it. Choices were numerically assigned x=0 for avoid and x=1 for approach, and 331 

variance (V) computed across n trials in each bin as Vbin=
1

𝑛
∑ (𝑛
𝑘=1 xk-x̄). Positive variance values 332 

reflect lower consistency (i.e., different choices registered at different times for similar offers). We 333 

compared (between participants) regions identified as high and low conflict (see above) using 334 

each participant's average consistency score across all bins in a region. An additional indication 335 

of high conflict is lengthier RT which we defined as the time between the onset of the offer and 336 

the registration of a response. We accordingly compared (between participants) trials identified 337 

as high and low conflict, comparing participants' region specific median RT. 338 

 339 

Computational modeling framework 340 

Overview. Our computational modeling aimed to assess whether states of high conflict shaped 341 

parameters associated with choice behavior, and whether key parameters were additionally 342 

associated with trial-by-trial fluctuations in neural signals, a cardiac-sympathetic signal or the 343 

alignment (interaction) of neural and cardiac signals. 344 

 345 

HDDM. We decomposed behavior using a Hierarchical-Bayesian extension of the drift-diffusion 346 

model (DDM; Figure 1D). The DDM classically proposes that choice and RT data are underscored 347 

by a noisy evidence accumulation process that terminates at a decision criterion (boundary). 348 

Following an initial nondecision time (t), the decision process begins at starting point (z) and 349 

accumulates evidence at rate (v) toward one of two boundaries that determines the choice (in our 350 

case, approach (+) or avoid (-)); boundaries are separated by distance (a). These parameters 351 

provide a fine-grained assay of behavior, such as likely bias toward one choice (z), how rapidly 352 

evidence is integrated during decision formation (v) or the amount of evidence required before a 353 

choice is executed (a wider boundary denoting a more conservative criterion). With the 354 
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Hierarchical-Bayesian extension (HDDM; Wiecki et al., 2013), the choice and RT data of each 355 

trial (yt) form a distribution described by a Wiener diffusion likelihood function (Navarro and Fuss, 356 

2009), parameterized by {a,v,t,z}. These parameter posteriors can be sampled in a static fashion 357 

using Bayes Monte Carlo, i.e.: 358 

 359 

yk~Wiener(a,v,t,z) 360 

[Eq. 2] 361 

 362 

A wealth of existing literature has tested hypotheses by additionally fitting the DDM parameters 363 

separately for different task conditions (e.g. Ratcliff and Frank, 2012; Wiecki et al., 2013; 364 

Bottemanne and Dreher, 2019; reviews in O'Connell et al., 2018; Gupta et al., 2022). Under the 365 

above probabilistic framework, parameters {a,v,t,z} can be fitted as a mixture model, to account 366 

for different states (s). In such a case, the model assigns yk to one of two Wiener distributions, 367 

depending on trial k's state of conflict (s), i.e.: 368 

 369 

yk|(sk=s)~Wiener(as,vs,ts,zs) 370 

[Eq. 3] 371 

 372 

where s∈{0,1}, i.e., low or high conflict. Evaluating this mixture extension allows probabilistic 373 

inference that DDM parameters are credibly different depending on the state of conflict. This can 374 

be evaluated using model fits and/or by testing whether the highest density interval (HDI) of the 375 
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group-level posterior for a parameter in low conflict (s=0) minus the posterior for that parameter 376 

in high conflict (s=1) does not subtend 0, i.e., 0 ∉ HDI([p(P0∣y0)] - [p(P1∣y1)]), where P∈{a,v,z,t}. 377 

 378 

Under the probabilistic framework, parameters {a,v,t,z} can additionally be modeled as a linear 379 

combination of continuous predictors, such as trial-by-trial estimates of a neural (e.g., Frank et 380 

al., 2015) or cardiac-sympathetic signal, i.e.: 381 

 382 

yk~Wiener(a,v,t,z), where: 383 

a=b0,a+b1,a*X1 ,..., bn,a*Xn 384 

v=b0,v+b1,v*X1 ,..., bn,v*Xn 385 

t=b0,t+b1,t*X1 ,..., bn,t*Xn 386 

z=b0,z+b1,z*X1 ,..., bn,z*Xn 387 

[Eq. 4] 388 

 389 

Here, X1 ,..., Xn are vectors of trial-by-trial physiology signals and b1,P ,..., bn,P are their coefficients 390 

(for each P∈{a,v,t,z}). Evaluating this regression extension (either using model fits or by testing if 391 

the HDI of group-level posteriors b1,P ,..., bn,P do not contain 0) allows probabilistic inference that 392 

DDM parameters are associated with moment-to-moment physiological fluctuations. 393 

 394 
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Finally, the models described in Eqs. 3 and 4 can be merged into a mixed-regression model, to 395 

allow inference about both state-specific parameter estimates and state-specific associations 396 

between moment-to-moment physiology and parameters, i.e.: 397 

 398 

yk|(sk=s)~Wiener(as,vs,ts,zs), where: 399 

as=b0,a,s + b1,a,s *X1,s ,..., bn,a,s *Xn,s 400 

vs=b0,v,s + b1,v,s *X1,s ,..., bn,v,s*Xn,s 401 

ts=b0,t,s + b1,t,s *X1,s ,..., bn,t,s *Xn,s 402 

zs=b0,z,s + b1,z,s *X1,s ,..., bn,z,s *Xn,s 403 

[Eq. 5] 404 

 405 

Here X1,s ,..., Xn,s are vectors of trial-by-trial physiology signals in state s. Evaluating this mixture-406 

regression extension allows the inferences of Eqs. 3 and 4. In addition, this model allows 407 

probabilistic inference about whether the association between DDM parameters and physiological 408 

fluctuations depends on the state of conflict. 409 

 410 

In our analyses, we used an iterative approach to narrow down the best combination of physiology 411 

variables associated with state-specific parameters of the DDM. We first fitted a "baseline" model. 412 

This was the mixture model described in Eq. 3 and it both served as a baseline comparison for 413 

later physiology models and probed the static parametric differences between high and low 414 

conflict (Figure 2D). We then fitted a series of mixture-regression models using the formula in Eq. 415 

5. These models tested if additionally modeling the state-specific parameters as a linear 416 
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combination of a state-specific physiology signal would provide a better-fitting model than the 417 

baseline. These "singular" models (Figure 3D) contained a single regressor, i.e.: 418 

 419 

Ps=b0,P,s+b1,P,s*X1,s for each P∈{a,v,z,t} 420 

[Eq. 6] 421 

 422 

where s∈{0,1}, i.e., low or high conflict, and the single regressor (X1,s) was one of the neural 423 

variables, or the cardiac-sympathetic variable, described below. We used model fits (Deviance 424 

Inference Criterion (DIC); Wiecki et al., 2013) to determine if these singular models were a better 425 

fit to the data than the baseline model.  426 

 427 

We pre-empt some results here to aid describing the next stage of modeling, i.e., that a number 428 

of singular models were superior fits to baseline, including the singular model containing the 429 

cardiac-sympathetic assay. We next fitted a series of "cross-modal" mixture-regression models 430 

(Figure 3E). These models tested whether the best singular model fit could be improved by 431 

extending it to two regressors. In each of these models, one regressor was the cardiac-432 

sympathetic assay and the other regressor was a neural variable (i.e., cross-modal). We restricted 433 

the addition of neural variables to only those that had featured in singular models that were 434 

superior fits to baseline. A two-regressor "additive" cross-modal model was therefore:  435 

 436 

Ps=b0,P,s+b1,P,s*X1,s+b2,P,s*X2,s for each P∈{a,v,z,t} 437 

[Eq. 7] 438 
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 439 

Here s∈{0,1}, i.e., low or high conflict, the first regressor (X1,s) was the cardiac-sympathetic assay 440 

and the second regressor (X2,s) was a neural variable from singular models outperforming 441 

baseline. An additional three-regressor "interactive" cross-modal model was: 442 

 443 

Ps=b0,P,s+b1,P,s*X1,s+b2,P,s*X2,s+b3,P,s*X3,s for each P∈{a,v,z,t} 444 

[Eq. 8] 445 

 446 

Here all parameters were the same as in Eq. 7, except now a third regressor (X3,s) contained the 447 

z-score-normalized dot product of X1,s and X2,s, i.e., capturing the correlation over trials between 448 

the neural and cardiac variable. In other words, the interactive model additionally allowed 449 

inference about the alignment of neural and cardiac signals being associated with DDM 450 

parameters. We used model fits DIC scores to determine if any additive (Eq. 7) or interactive (Eq. 451 

8) models were a better fit to the data than the best-fitting singular model (Eq. 6).  452 

 453 

We pre-empt some additional results here to aid describing the next stage of modeling, i.e., that 454 

a number of cross-modal models were superior fits to the best-fitting singular model. We next 455 

fitted a final series of mixture-regression models (Figure 3F). These "complement" models now 456 

tested whether the best-fitting cross-modal model could be improved by extending it to incorporate 457 

additional neural regressors and regressors of neural-cardiac alignment. The design matrix of 458 

these models started with the regressors from the best-fitting cross-modal model, i.e., a neural 459 

variable, the cardiac-sympathetic variable and, if applicable, the interaction term. We then tested 460 

if the fit could be improved by also including complement (i.e., set difference) regressors from 461 
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other cross-modal models. In other words, we combined cross-modal design matrices, removing 462 

redundant regressors. We tested complement models by merging the best-fitting cross-modal 463 

model with the set difference of the cross-modal models involving all neural variables that passed 464 

the singular model stage (i.e., early_attn_rew, late_the, early_SS_sym, late_alpha_sym, 465 

late_alpha_rew), using their best-performing cross-modal forms (i.e., whether or not they included 466 

interactions). Each "complement" model was therefore: 467 

 468 

Ps=B*[X'P,s∣X′′P,s∖X′P,s] for each P∈{a,v,z,t} 469 

[Eq. 9] 470 

 471 

where s∈{0,1}, i.e., low or high conflict, X' is the design matrix of the best-fitting cross-modal 472 

model, X'' is the design matrix of an additional cross-modal model (provided it was a superior fit 473 

to the best singular model) and X′′∖X′ describes the set-difference, i.e., removal of any common 474 

columns between them. B is a coefficient vector of length corresponding to the resulting 475 

concatenated design matrix. We used model fits DIC scores to determine if any complement 476 

models (Eq. 9) were a better fit to the data than the best-fitting cross-modal models (Eqs. 7–8). 477 

 478 

Model to discretize neural-cardiac interactions. We pre-empt some additional results here to aid 479 

describing the next stage of modeling, i.e., that one complement model was a superior fit to the 480 

best-fitting cross-modal model. This model featured an association between the decision 481 

boundary and a dot-product regressor described in the "interactive" model in Eq. 8 (specifically 482 

contractility⋅late alphasym). This association was additionally unique to states of high conflict. To 483 

help clarify the underlying dynamics of this seeming three-way interaction, we fitted a model that 484 
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discretized these two continuous regressors (high and low contractility and high and low late 485 

alphasym) within each participant, and fitted a decision boundary separately for the resulting 486 

combination of physiological states, separately again for low and high conflict, creating eight 487 

states in total. This model was the same as the baseline model in Eq. 3 but with a different 488 

parameter mixture for the decision boundary, i.e.: 489 

 490 

yk|(sk=s,dk=d)~Wiener(ad,vs,ts,zs) 491 

[Eq. 10] 492 

 493 

where s∈{0,1}, i.e., low or high conflict, and d∈{000,001,010,011,100,101,110,111}, where the 494 

digits in each of the eight binary code sequences respectively describe the conflict (low (0) or high 495 

(1)), late alphasym (low (0) or high (1)) and contractility (low (0) or high (1)) states of trial k. The 496 

latter two levels were classified using median splits within participants. In this model, we report 497 

parameter estimates ad as a difference measure (Δ boundary) from when d=000.  498 

 499 

Control models for local and global brain activity. To assess whether cardiac-sympathetics might 500 

be a proxy for more general activity levels in the brain (for example, a global or frequency-specific 501 

increase in gain), we performed two additional control models for our best-fitting complement 502 

model. In each case, we substituted an alternative measure of brain activity for the contractility 503 

regressor and the contractility component of any dot-product (interaction) regressors featuring 504 

contractility. In the first, we substituted contractility with an estimate of global field power (GFP; 505 

Skrandies, 1990), which we computed as the standard deviation across all electrodes in the 506 

montage, with data bandpass-filtered from 1 Hz to 40 Hz. In the second, we substituted 507 
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contractility with a signal more local to the relevant frequency band in our findings (alpha). For 508 

this, we used an estimate of the average alpha power across all electrodes in the montage, with 509 

data preprocessed in the same way as our assays in this frequency band (see below). For a single 510 

trial-by-trial estimate in each case, we averaged both the GFP measure (using the root-mean-511 

square average) and the global alpha power measure across timepoints in the time window [0 s 512 

to 1 s] post offer onset. 513 

 514 

In all HDDM models, we sampled both individual and group-level parameters in a hierarchical 515 

fashion and report group-level findings. We sampled posteriors 5000 times with Markov-Chain 516 

Monte Carlo, using the HDDMRegressor function from the HDDM toolbox (Wiecki et al., 2013) 517 

version 0.6.0 in Python 2.7, using default settings for hyper-parameters. We discarded the first 518 

500 samples of each posterior estimate as tuning steps. A single drift rate was fitted using a link 519 

function that made it negative on avoid trials and positive on approach trials. 520 

 521 

Alternative model assessment. For the baseline model, and for the best-fitting singular, cross-522 

modal, and complement models, we additionally report a proxy of RT variance explained by each 523 

model using a bin-by-bin regression procedure. This procedure first simulated trial-by-trial RTs 524 

using posterior medians of parameters of the models (linearly estimated where relevant using 525 

model coefficients and trial-by-trial regressors) with a Wiener-like process. For approach trials, 526 

the simulated decision process (x) initiated at time (RT=0) at a starting point in units of the 527 

boundary, i.e., x(RT=0)=z⋅a. As RT increased in units of 0.01, x increased with x=x+0.01v until 528 

the boundary was reached, i.e., x>a. For avoid trials, the process was the same except with v 529 

inverted and the process continuing until x<0. Finally, nondecision time (t) was added to the 530 

resulting RT to arrive at the final simulated value. We next binned observed RTs and correlated 531 
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bin-by-bin medians with medians derived from corresponding simulated RTs. We report variance 532 

explained from Pearson correlations (R2) for this procedure separately using 10, 15, 20, 25, 30, 533 

35, and 40 bins of RT in the correlation. 534 

 535 

EEG neural recordings - Recording, preprocessing and assays 536 

Recording. Concurrent with the approach-avoidance paradigm, we recorded continuous 537 

electroencephalogram (EEG) data from a montage of 63 scalp electrodes (channels) arranged 538 

using the International 10-20 system. We sampled the EEG signal at 1000 Hz from each channel, 539 

using a BrainAmp MR amplifier (Brain Products, Berlin, Germany). Channel FCz served as the 540 

online reference while channel Cz served as the ground. Between blocks, experimenters paused 541 

recordings to check electrode impedance (<5 kΩ) and noisy channels. 542 

 543 

EEG preprocessing used functions available in the EEGLAB toolbox (Delorme and Makeig, 2004). 544 

First, each participant’s EEG data were downsampled (250 Hz) and hi-pass filtered (<1 Hz) 545 

separately for each block. Line noise was removed with an automated function (Mullen, 2012). 546 

We merged resulting sets of blockwise data into a single set (one set per subject) and identified 547 

noisy channels using an automated function that tested whether data in each channel correlated 548 

with those in surrounding channels by a coefficient of at least 0.85 (Kothe and Makeig, 2013). 549 

Identified channels were replaced using spherical interpolation. We then re-referenced datasets 550 

to the montage average, created epochs spanning from -1 s to +6 s relative to offer onset, and 551 

subtracted baseline means (taken from the window -.5 s to 0 s relative to offer onset). We then 552 

performed ICA decomposition separately on each subject’s resulting epochs, and stored the 553 

resulting weights of components that were 95% likely to be ocular or cardiac activity, determined 554 

by an automated classifier (Pion-Tonachini et al., 2019). We next imported, downsampled, hi-555 
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pass-filtered and removed line noise from participants' separate blocks of raw data again, as 556 

above. Separately for each block, we replaced noisy channels as above and removed ICA 557 

components related to ocular and cardiac artefacts. We marked any data point where any channel 558 

still exceeded 150 mV (for later rejection) and applied a spatial Laplacian filter across multichannel 559 

data at each time point. We then reversed the laterality of electrodes on all trials where reward 560 

appeared on the left of the screen, so that each trial "de facto" presented reward on the right and 561 

cost on the left. We refer to data at this stage as "preprocessed" data. 562 

 563 

Assay of sensory gain. To extract timeseries from preprocessed data for steady-state visually 564 

evoked potentials relevant for reward (SSrew) and cost (SSshk) information (Figure 3A), we used 565 

rectified and smoothed power timeseries that had been filtered to either 12 or 13.33 Hz, depending 566 

on the flicker of reward or cost information for a given trial (note that no specific frequency mapped 567 

onto either reward or cost; flickers varied trial-by-trial). We convolved each channel’s fast-Fourier-568 

transformed data with trapezoid-shaped bandpass filters ("on" width = .5 Hz, transition bandwidth 569 

= 0.25 Hz), centered on 12 Hz or 13.33 Hz before rectifying, smoothing (mean within sliding 570 

windows spanning 66 ms) and downsampling inverse-Fourier timeseries to 125 Hz. We also 571 

constructed a third dataset, using these exact procedures, but with filters centered on 12.66 Hz 572 

(midway between 12 and 13.33 Hz), and subtracted it from SSrew and cost SSshk timeseries to 573 

mitigate SS influence from underlying activity in the alpha band. We created epochs spanning 574 

from -1 s to +6 s relative to offer onset for the 12 and 13.33 Hz datasets, removing the baseline 575 

average value in the 500 ms window prior to offer onset. For trial-by-trial measures, we computed 576 

the average power in early ([0 s to 1 s] post offer onset) and late ([1 s to 2 s]) time windows (Figure 577 

3A). Amplitudes were averaged at electrode sites contralateral to the relevant information, i.e., 578 

O1 and PO1, or at electrodes O2 and PO2, depending on reward and cost laterality on a given 579 

trial (Figure 3A).  580 
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 581 

Assay of goal-directed attention. We also extracted timeseries from preprocessed data of spatially 582 

sensitive alpha power, i.e., relevant for reward (alpharew) and cost (alphashk) information (Figure 583 

3B). We first applied notch filters to remove power in SS frequencies (inverse of bandpass filters 584 

above), and then convolved each channel’s fast-Fourier-transformed data with a trapezoid-585 

shaped bandpass filter ("on" segment spanning 7 Hz to 14 Hz, transition bandwidth = 0.5 Hz). 586 

Resulting inverse-Fourier timeseries were rectified, smoothed (mean within sliding windows 587 

spanning 66 ms) and we downsampled channels to 125 Hz. We created epochs spanning from -588 

1 s to +6 s relative to offer onset, removing the baseline average value in the 500 ms window prior 589 

to offer onset. For trial-by-trial measures, we computed the average power in early ([0 s to 1 s] 590 

post offer onset) and late ([1 s to 2 s]) time windows (Figure 3B). Amplitudes were averaged at 591 

electrode sites contralateral to the relevant information, i.e., PO and PO7, or at electrodes PO2 592 

and PO8, depending on reward and cost laterality on a given trial (Figure 3B). 593 

 594 

Symmetry timeseries. In our approach-avoidance paradigm, conflict peaks when an offer's value 595 

makes approaching it as appealing as avoiding it, measured as the absolute distance from a 596 

decision boundary (SV=0 or p(approach)=0.50; Figure 1). For both the SS and alpha timeseries 597 

we also computed a neural proxy of conflict to include in our models, by way of a “symmetry” 598 

timeseries, at each timepoint (t); i..e, SS(t)sym=-1*log(|SS(t)rew-SS(t)rew|); alpha(t)sym=-599 

1*log|alpha(t)rew-alpha(t)shk|). Given the inversion, higher values reflect higher symmetry, or in 600 

other words, that more equal power was present in the traces relevant for reward and cost (Figure 601 

3A–B). For trial-by-trial measures, we computed averages in the same manner (early and late 602 

windows) as the single traces. To verify that these symmetry metrics tracked conflict, we 603 

performed repeated-measures ANOVAs testing whether each participant's symmetry trace was 604 
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modulated by the state of conflict (low or high), the phase of trials (early vs late), or their 605 

interaction. 606 

 607 

Assays of cognitive control and decision making. The assays of neural activity described above 608 

exploit the modifications (graded onset, frequency-tagged, spatially mapped stimuli) we made to 609 

the approach-avoidance paradigm and allow comparison and contrast between early and late 610 

perceptual processes during decision making. However, to perform a more complete analysis of 611 

neural-cardiac-behavioral relationships, we additionally extracted neural signals traditionally 612 

associated with other components that are likely relevant during the approach-avoidance conflict. 613 

The first was delta power over posterior parietal sites (Figure 3C). Activity in this frequency range 614 

has been linked with DDM-like mechanisms of decision making in perceptual contexts (O'Connell 615 

et al., 2012; Harper et al., 2014). For trial-by-trial measures, we computed the average power 616 

between (1 and 4 Hz) in early ([0 s to 1 s] post offer onset) and late ([1 s to 2 s]) time windows at 617 

electrode sites (CPz and Cz). The other signal we extracted was frontal-midline theta (Figure 3C), 618 

classically considered an assay of cognitive control and action regulation (Luu et al., 2004; 619 

McLoughlin et al., 2014). For trial-by-trial measures, we computed the average power between (4 620 

and 7 Hz) in early ([0 s to 1 s] post offer onset) and late ([1 s to 2 s]) time windows at electrode 621 

sites (Fz, F1 and F2). 622 

 623 

Alpha-phase coherence. In a final neural-cardiac analysis (as a follow-up on later-reported 624 

results), we probed how the state of cardiac-sympathetics (specifically, whether contractility was 625 

high or low) was related to the coherence of alpha power across trials, relevant to both the reward 626 

and cost information. We re-processed the alpha-band activity contralateral to the reward and 627 

cost information, extracting the phase angle of these waveforms over time, i.e., alpharewθ and 628 
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alphashkθ. If specific events (such as the onset of an offer) evoked temporally consistent 629 

fluctuations in alpha power, phase angles would summarize across trials to a coherent sinusoid-630 

like waveform oscillating in and around the alpha-band frequency (7–14 Hz). We averaged across 631 

trials for each participant's alpharewθ and alphashkθ timeseries, separately for trials in states of high 632 

and low conflict and separately again for trials in states of high and low contractility (determined 633 

by a median split across all of a participant's trials). To compute a summary estimate of early and 634 

late coherence across trials, we rectified the resulting participant-average phase waveforms |θ|, 635 

and computed the average values across datapoints in early ([0 s to 1 s] post offer onset) and 636 

late ([1 s to 2 s]) time windows (Figure 5A). 637 

 638 

Cardiac-sympathetic recordings - Recording, preprocessing and contractility assay 639 

Recording. Concurrent with the approach-avoidance paradigm we also recorded data from 640 

combined electrocardiogram (EKG) and impedance cardiogram (ICG) using a total of ten EL500 641 

electrodes (BIOPAC, USA). Prior to recording, in a private room, a trained female researcher 642 

disinfected the skin at the electrode sites. They gently exfoliated the skin with an abrasive pad 643 

(ELPAD, BIOPAC, Inc.), applied NuPrep skin exfoliating gel (ELPREP, BIOPAC, Inc.) to each 644 

electrode site (~1-by-1 inch area of skin) and fanned the sites dry. EKG was recorded from one 645 

electrode beneath the right collarbone and one beneath the left rib cage. ICG was recorded from 646 

eight electrodes: two on each side of the torso and two on each side of the neck. ICG electrodes 647 

served as the ground for EKG. All electrodes had a small dab of electrode gel (GEL100, BIOPAC, 648 

Inc.). The upper neck and lower torso (outside) electrodes injected a 4mA alternating current into 649 

the thoracic cavity at 50 kHz, while the lower neck and upper torso (inner) electrodes were 650 

voltage-sensing. We sampled both the EKG and ICG signals at 5000 Hz via carbon fiber leads 651 

connected respectively to ECG100C and NICO100C amplifiers, integrated with an MP150 system 652 

JN
eurosci

 Acce
pted M

an
uscr

ipt



 

 

29 

(BIOPAC, Inc.). Online, AcqKnowledge software version 4.3 differentiated the raw basal 653 

transthoracic impedance (z) ICG data with respect to time (dz/dt) and removed respiratory artifact 654 

from the ensuing dz/dt waveform with a high-pass filter (BIOPAC, Inc.). Once seated in the testing 655 

suite, we instructed participants to minimize unnecessary movement and vocal sounds to limit 656 

disruptions to the physiology signal. Participants completed a nonrecorded resting period to 657 

acclimate to the study environment. Between blocks, experimenters paused recordings to check 658 

for noise in the EKG and ICG data. 659 

 660 

EKG/ICG preprocessing and contractility assay. We estimated contractility from the pre-ejection 661 

period (PEP). We used a semi-automated software package (MEAP; Cieslak et al., 2018), which 662 

uses moving ensemble averages (15-second windows) to help identify the R point of the EKG 663 

QRS complex (early systole: initial left-ventricular depolarization) and the B point of the dz/dt 664 

waveform from the ICG (mid systole: opening of the aortic valve), for each individual heartbeat 665 

(Figure 3D); all heartbeats were manually checked for correct point classification. The time period 666 

between these two cardiac events is the pre-ejection period (PEP). This electro-mechanical time 667 

interval, covering systolic activity from the initial electrical depolarization of the left ventricle until 668 

the opening of the aortic valve, is an index of beta-adrenergic contraction vigor, and is primarily 669 

mediated by sympathetic activity (Lewis et al., 1974; Light, 1985; Linden, 1985; Newlin and 670 

Levenson, 1979; Sherwood et al., 1986; 1990). Shorter intervals reflect increased contractility 671 

(positive inotropy). For trial-by-trial measures, we computed the average PEP value across all 672 

heartbeats occurring in the two-second window immediately following offer onset (Figure 3D). 673 

These values were log-transformed and then reverse-scored, so that higher values reflect higher 674 

contractility. 675 

 676 
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 677 

Results 678 

 679 

We recorded continuous multi-channel electroencephalography and cardiac-sympathetic 680 

physiology while 27 human participants performed an approach-avoidance task, trading off 681 

monetary reward for electric shock cost (see trial schematic in Figure 2A). On average, 682 

participants accepted 68% (σ=12.6%) of offers, and responded with median RT of 1.73 seconds 683 

(σ=0.428) relative to offer onset. 684 

 685 

Behavioral results 686 

Logistic choice models. From two-dimensional logistic models fitted separately to each individual 687 

subject’s set of choices, modeling p(approach) as a function of an intercept (b0) and the magnitude 688 

of monetary reward (b1) and shock cost (b2) offered on each trial, these two continuous value 689 

dimensions respectively increased (group-mean b1=6.05; t(26)=9.55; p<0.001, Figure 2B) and 690 

decreased (group-mean b2=-4.76; t(26)=-7.65; p<0.001, Figure 2B) the log odds of approach. In 691 

other words, participants integrated both reward and a cost into their choices. However these 692 

parameters also confirmed that participants were reward sensitive, characterized by a bias toward 693 

approach (group-mean b0=4.15; t(26)=6.08; p<0.001, Figure 2B), and an overweighting of reward 694 

in the integration of value dimensions (group-mean |b1|-|b2|=0.987; t(26)=3.59; p<0.001, Figure 695 

2B), consistent with previous studies (Shapiro and Grafton, 2020; Dundon et al., 2021; Pedersen 696 

et al., 2021). 697 

 698 

[Figure 2 here] 699 
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 700 

From these logistic models we classified each trial as offering either high or low conflict (see 701 

methods). We confirmed that these classifications gave rise to the typical behavioral features of 702 

encountering conflict: less consistent choice and lengthier RT. First, we observed in a 703 

nonparametric estimate of choice consistency across participants, that there was a higher level 704 

of deviation in choices (i.e., different choices registered at different times for similar offers, 705 

enumerated with a bin-by-bin variance estimate (V); see methods) in trials identified as high 706 

conflict (Vchoice,high=0.071) compared to trials identified as low conflict (Vchoice,high =0; t(26)=13.23, 707 

p<0.001; Figure 2C). Next, we observed across participants in a comparison of median RT, that 708 

responses were longer on trials identified as high conflict (RThigh=2.02 s) compared to trials 709 

identified as low conflict (RTlow=1.66 s; t(26)=12.10, p<0.001; Figure 2C). 710 

 711 

Baseline computational model. We next fitted a baseline hierarchical Bayesian drift-diffusion 712 

model (HDDM; Wiecki et al., 2013), to get a clearer insight into how increased conflict alters the 713 

computational parameters associated with choice and RT. This model (described in Eq. 6) fitted 714 

distinct group-level DDM parameters {a,v,z,t}, depending on whether participants were making 715 

choices on trials in states of low or high conflict. This baseline model revealed that in high conflict, 716 

participants displayed a wider decision boundary (a), consistent with seeking more evidence 717 

before executing their choices (Figure 2D; Table 2-1). The model also revealed that participants 718 

reached this decision boundary by way of a dampened rate of evidence accumulation ((v); Figure 719 

2D; Table 2-1). Starting points (z) in this DDM also suggested an overall bias toward approach in 720 

states of both low and high conflict, however this bias was attenuated in high conflict (Figure 2D; 721 

Table 2-1). Finally, nondecision time (t) was slightly shorter in high conflict (Figure 2D; Table 2-722 

1). 723 
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 724 

Summarizing the behavioral and baseline computational results so far, participants were reward 725 

sensitive, but also confronted states of subjective "conflict". The parametric-behavioral response 726 

to states of high conflict appeared to involve a larger requirement of evidence prior to committing 727 

choices, a slower accumulation of evidence toward that criterion and an attenuated bias toward 728 

approach behavior. 729 

 730 

Verifying neural symmetry’s association with conflict. Two within-subjects ANOVAs verified that 731 

the SSsym (F(1,26)=8.29, p=0.008) and alphasym (F(1,26)=5.82, p=0.023) “symmetry” traces varied 732 

with conflict. For alpha, there was also an interaction with trial phase (F(1,26)=11.9, p=0.002): no 733 

significant difference between conflict states early (mean difference=-0.008; SE=0.012; 734 

pTukey=0.906), but higher symmetry in high conflict late (mean difference=-0.043; SE=0.012, 735 

pTukey=0.004). 736 

 737 

 738 

Cross-modal (neural and cardiac-sympathetic) collaborative association with (DDM) parameters 739 

We next tested if DDM parameters were associated with trial-by-trial physiological fluctuations, 740 

and if this association was unique to a specific state (i.e., low vs high conflict). Specifically, we 741 

used an iterative modeling approach to find a best-fitting combination of physiological signals 742 

associated with DDM parameters, with an emphasis on discovering cross-modal (i.e., neural and 743 

cardiac) collaboration. We began this process with a total 17 candidate physiology signals. Neural 744 

signals were: steady-state visually evoked potentials relevant for reward (SSrew) and cost (SSshk) 745 

information, in addition to the "symmetry" trace (SSsym) enumerating the similarity between these 746 
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traces (i.e., the symmetry across the brain) over time (Figure 3A); spatially sensitive alpha power, 747 

i.e., relevant for reward (alpharew) and cost (alphashk) information, in addition to a "symmetry" trace 748 

(alphasym) enumerating their similarity over time (Figure 3B); frontal-midline theta power (theta) 749 

and posterior-parietal delta (delta) power (Figure 3C). For each neural variable, we computed 750 

average power in early ([0 s to 1 s] post offer onset) and late ([1 s to 2 s]) time windows, making 751 

a total of 16 neural variables for each trial (Figure 3A–C). The 17th physiology signal was an 752 

estimate of cardiac contractility (inotropy; Figure 3D). We averaged across a positively scored 753 

contractility estimate for each heartbeat registered in the two-second window post offer onset 754 

(Figure 3D). 755 

 756 

Singular models. For the iterative modeling approach we first fitted a series of "singular" models 757 

(Eq. 6) that probed whether modeling DDM parameters {a,v,z,t} as a linear combination of a single 758 

regressor (i.e., one trial-by-trial physiology signal) would provide a better-fitting model than the 759 

baseline model described above. Using Deviance Information Criterion scores (DIC; Wiecki et al., 760 

2013) we observed that seven models provided an improved fit (Figure 3E); these models 761 

respectively modeled the DDM parameters as a function of trial-by-trial fluctuations in late alphasym 762 

(-ΔDIC=141.3), late alphashk (-ΔDIC=129. 8), late alpharew (-ΔDIC=116.45), contractility (-763 

ΔDIC=39.6), early SSsym (-ΔDIC=8.21), late theta (-ΔDIC=5.54) and early alpharew (-ΔDIC=2.31). 764 

A proxy for RT variance explained for the best fitting singular model is in Figure 3H. We therefore 765 

established first that behavioral decompositions from the DDM were associated with both neural 766 

and cardiac-sympathetic physiological signals that varied on a trial-by-trial basis, with neural 767 

signals predominantly involving the alpha band, and signals measured in the later time window. 768 

 769 

[Figure 3 here] 770 
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 771 

Cross-modal models. Singular models revealed associations between DDM parameters and both 772 

neural and cardiac-sympathetic signals. We next fitted a series of "cross-modal" models (Eqs. 7–773 

8). These models tested if the singular models containing a neural regressor could be improved 774 

by adding contractility as a second regressor (i.e., cross-modal). We restricted cross-modal 775 

models to include neural variables from the singular models that were superior fits to baseline. 776 

We also tested for evidence of both additive and interactive cross-modal collaboration. For 777 

additive collaboration, we tested models with two regressors (the neural variable in question, and 778 

contractility), while for interactive collaboration, we added a third interaction or "alignment" 779 

regressor which was the normalized product of the neural variable in question and contractility. 780 

This made 12 target cross-modal models in total (Figure 3F). We also updated the baseline, and 781 

tested if these cross-modal models improved the fit relative to the best-fitting singular model, i.e., 782 

which had alphasym as its sole regressor (dashed line from Figure 3E to 3F). From resulting 783 

differences in DIC scores, we observed six cross-modal models providing an improved fit over 784 

baseline. All such models involved alpha-band activity recorded in the late window (Figure 3F). 785 

The best-fitting model (-ΔDIC=29.0) was additive; it contained alphashk, that is, alpha power 786 

relevant for the cost information, alongside contractility, and no third alignment regressor. A proxy 787 

for RT variance explained for the best fitting cross-modal model is in Figure 3H 788 

 789 

Complement models. Our cross-modal models revealed that behavioral features could be 790 

modeled by a neural variable relative to cost (alphashk) in addition to cardiac-sympathetic 791 

fluctuations (contractility), i.e., side-by-side in the same model. However, given that cross-modal 792 

models involving alpha power relevant to reward information (alpharew) and the symmetry of alpha 793 

across the brain (alphasym) also provided improved fits (Figure 3F), we ran a final set of 794 
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"complement" models to test for their complementary association with DDM parameters (Eq. 9). 795 

In other words, we tested if the outright best cross-modal fit (additive alphashk, marked "m1" in 796 

Figure 3E) could be improved even further by also including complement (i.e., set difference) 797 

parameters from either of the two best-fitting cross-modal models involving alpharew and alphasym 798 

(each of which was interactive; each marked "m2" in Figure 3F). We again updated the baseline 799 

to the best-fitting cross-modal model (dashed line from Figure 3F to 3G). From resulting 800 

differences in DIC scores (Figure 3G), we observed both complement models to improve the fit, 801 

with substantial improvement in the case of adding set difference parameters involving the 802 

interactive cross-modal model with alphasym. (-ΔDIC=155.3). In other words, the best-fitting 803 

complement model modeled DDM parameters not just by alphashk and contractility, but also by 804 

the symmetry of alpha across the brain (alphasym) and the product of alphasym and contractility. A 805 

proxy for RT variance explained for the best fitting complement model is in Figure 3H. Our iterative 806 

modeling approach therefore unearthed a set of both neural (exclusively alpha) and cardiac-807 

sympathetic physiological signals associated with parameters of the DDM, and further revealed 808 

evidence for interactive cross-modal collaboration (i.e., neural and cardiac-sympathetic 809 

alignment). 810 

 811 

Inspecting the parameter posteriors of this best-fitting complement model (Figure 4A–D), the 812 

majority of associations were with the decision boundary (a). Wider boundaries were 813 

accompanied by a fairer spread of attention to all dimensions of available information, though this 814 

was not exclusive to states of high conflict. In both low and high-conflict states, there was a 815 

negative association between the boundary and alpha relevant to cost (alphashk; Figure 4A; Table 816 

4-1), suggesting greater desynchronization of alpha contralateral to cost information associated 817 

with increased boundaries (consistent with more attention being allocated to that information ). 818 

Also in both conflict states, there were positive associations between the boundary and the 819 
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symmetry of alpha on either side of the brain (alphasym; Figure 4A; Table 4-1). Widening 820 

boundaries were therefore not solely associated with deploying attention to cost, but also a more 821 

even spread of attention to both channels of information, consistent with a pursuit of greater 822 

evidence, but in an additive, i.e., not overriding manner. The relationship between the boundary 823 

and cardiac contractility was likewise observed in both states. This (positive) association was 824 

consistent with wider boundaries also accompanying increased sympathetic drive (contractility; 825 

Figure 4A; Table 4-1). Exclusive to states of high conflict, we identified the interactive aspect of 826 

cross-modal collaboration, i.e., neural and cardiac-sympathetic signals aligning with meaningful 827 

measures of behavior. That is, in addition to its linear relations with alphasym and contractility, the 828 

boundary (as determined through the DDM) was additionally positively associated with their 829 

alignment. Strikingly, this association only occurred in states of high conflict (alphasym*cont.; 830 

Figure 4A; Table 4-1). In other words, as participants made choices in high conflict, which was 831 

linked with wider decision boundaries, part of this boundary widening was directly related to 832 

alignment between a cardiac-sympathetic (positive inotropic) response and the degree of alpha 833 

symmetry across the brain. This was the sole evidence of such interactive cross-modal 834 

collaboration in our best-fitting model. 835 

 836 

[Figure 4 here] 837 

 838 

We observed more sparse associations between physiological signals and the remaining DDM 839 

parameters. Drift rate (v) was not credibly associated with any signal (Figure 4B; Table 4-1). The 840 

starting point (z) was related to alpha related to cost, only in states of high conflict (alphashk; Figure 841 

4C; Table 4-1). This positive association is consistent with a bias toward approach intensifying 842 

when less attention is directed at the cost information (i.e., more synchronization of alphashk). 843 
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Finally, state-specific associations emerged relating to nondecision time (t). Nondecision time is 844 

a constant term included in the DDM to account for early perceptual and motor preparation 845 

processes. In low conflict, nondecision time was longer when alpha symmetry decreased, and 846 

when alpha relevant to cost increased synchrony (alphashk and alphasym; Figure 4D; Table 4-1). 847 

Conversely, in high conflict, nondecision time was longer solely when alphasym increased (Figure 848 

4D; Table 4-1). 849 

 850 

To help clarify the underlying dynamics of the seeming three-way interaction and the decision 851 

boundary (i.e., associations between the decision boundary and combinations of conflict, alphasym 852 

and contractility) we fitted a modified version of the baseline model in Eq. 3. This model discretized 853 

trials into eight bins depending on whether these three measures were high or low, and fitted a 854 

separate decision boundary for each. Figure 4E and  Table 4-2 respectively depict and 855 

characterize the resulting parameter posteriors, expressed relative to a baseline (low conflict, low 856 

late alphasym and low contractility). We here see that the decision boundary is credibly widest 857 

when both contractility and the symmetry of alpha across the brain is high. This is consistent with 858 

the interaction in Figure 4A being driven by the two signals synchronously increasing (i.e., higher 859 

contractility alongside higher alpha symmetry) during moments of conflict. 860 

 861 

We additionally fitted control models to assess whether cardiac-sympathetics might be a proxy 862 

for more general activity levels in the brain, i.e., a global or frequency-specific increase in gain 863 

(Figure 4F). In these models, we used the best-fitting complement model, substituting contractility 864 

regressors (and interaction regressors featuring contractility) with an estimate of global field power 865 

(GFP; Figure 4F) and total alpha power in the brain (whole brain alpha; Figure 4F). Only the model 866 

substituting contractility with global field power (GFP) was a slightly better fit (-ΔDIC=5.78). 867 
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However, inspecting parameters posteriors for the decision boundary in this control model 868 

alongside the contractility complement model (right panels of Figure 4F; Table 4-2) we observed 869 

a striking dissociation between the direction of associations. While the boundary is widest for high 870 

levels of contractility and alphasym, alignment of GFP and late alphasym was instead associated 871 

with smaller boundaries (parameters marked with arrows in figure 4F). This strengthens the case 872 

that contractility might be part of a physiological response to scrutinize evidence in a conflicting 873 

situation, in contrast to other brain signals that might instead be associated with an urgency to 874 

respond more quickly. 875 

 876 

Inter-trial alpha-phase coherence. In the above section we observed that alpha dynamics and 877 

their alignment with cardiac-sympathetic signals were associated with behavioral parameters 878 

during the approach-avoidance conflict. That is, during high-conflict choices, the width of the 879 

decision boundary was positively associated with the alignment between contractility and alpha 880 

symmetry. We lastly sought additional evidence (outside of computational models) regarding the 881 

nature and characteristics of the relationship between contractility and alpha dynamics. For this, 882 

we probed how the state of cardiac-sympathetics (specifically, whether contractility was high or 883 

low) was associated with coherence of alpha power across trials, separately for alpha power 884 

relevant to both the reward and cost information, and separately again for high and low-conflict 885 

trials. We extracted the phase angle of these waveforms over time, i.e., alpharewθ and alphashkθ. 886 

Figure 4G depicts alpharewθ and alphashkθ summarized across trials and participants, separately 887 

for trials that were above (high contractility) or below (low contractility) a participant's median. 888 

Note that the waveforms in Figure 4 only show trials in states of high conflict. Here we observe 889 

alpha-like oscillations present in each time series, indicating coherence across trials. However, 890 

during the later time window, the sinusoidal patterning in alpharewθ (Figure 4G top panel) appears 891 

to be greater on low-contractility trials. A three-way within-subjects ANOVA of summarized 892 
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rectified phase angles |θ| as a function of the timeseries (alpharewθ, alphashkθ), time window (early, 893 

late) and contractility (high, low) confirmed by way of a three-way interaction (F(1,26)=5.84, 894 

p=0.023) that coherence was indeed higher in low contractility (|θ|=0.117) vs high contractility 895 

(|θ|=0.091; pTukey=0.012), only in the alpharewθ timeseries and only in the late time window (Figure 896 

4H). In addition, the same three-way ANOVA returned no three-way interaction for trials in states 897 

of low conflict (F(1,26)=0.5033, p=0.484). Thus, this additional analysis using both raw data and 898 

an alternative means to look at frequency decomposition (coherence vs power) first supports the 899 

idea that the relationship between contractility and alpha dynamics is relevant primarily in states 900 

of high conflict. In addition, the reduced coherence across trials in alpha power relevant for reward 901 

when contractility was high, uniquely observed for high-conflict trials, additionally reveals a 902 

potential mechanistic role of for the sympathetic response during conflict. That is, fair assessment 903 

of all available information during a high-conflict decision might require disrupting a dominant 904 

reward-related signal, and sympathetic systems might contribute to this disruption. 905 

 906 

 907 

Discussion 908 

 909 

Event-related physiological sciences have laid the foundations to explore cross-modal (i.e., neural 910 

and cardiac-sympathetic) collaboration subserving complex value-based behavior. We recorded 911 

parallel continuous electroencephalographic and cardiac-sympathetic data to probe associations 912 

between cognitive-neural and cardiac-sympathetic responses (contractility) while humans 913 

performed a modified version of the approach-avoidance paradigm. Our findings suggest 914 

participants were reward sensitive but encountered "conflict" when approach and avoidance 915 

presented similar value. Using the drift-diffusion model (DDM), we computationally decomposed 916 
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their behavior during conflict, which principally involved a widened decision boundary, consistent 917 

with pursuit of more evidence prior to choices. Our best-fitting model of DDM dynamics suggested 918 

that regardless of the state (low or high conflict), the boundary increased alongside increased 919 

goal-directed attention to both costs and rewards, as well as alongside increased cardiac 920 

contractility. However, exclusively in states of high conflict, the alignment of neural and cardiac-921 

sympathetic was associated with additional increase of the boundary width. This association was 922 

markedly different from those involving alternative proxy measures of neural gain. Together, these 923 

findings offer the first evidence of a potential interactive cross-modal collaboration of neural and 924 

cardiac-sympathetic systems during evidence scrutiny in conflicting value-based decisions. 925 

Analyses involving cross-trial coherence additionally proposed a putative role for sympathetics, 926 

i.e., disrupting the dominance of reward signals. 927 

 928 

Our findings suggest that cardiac-sympathetic activity is closely linked with neural processes and 929 

specific behavioral parameters during approach-avoidance conflict, indicating that these 930 

peripheral responses may be recruited by cognitive processes. Beginning with cardiac-931 

sympathetics, the contractility-boundary relations are broadly consistent with sympathetic 932 

reactivity in contexts of increasing uncertainty (Palacios-Filardo and Mellor, 2019) and greater 933 

difficulty (Richter et al., 2008). However, our cross-trial coherence findings are the strongest 934 

evidence yet that the drivers of sympathetic reactivity might influence dominant reward-signal 935 

processing during value-based conflict. Under a value-based framework, such a role would not 936 

necessarily conflict with other previous findings associating cardiac indices with the pursuit of 937 

reward (Richter et al., 2016). That is, a uniform behavioral policy (i.e., approaching all or avoiding 938 

all) for offers presenting high conflict will result in long-term net-negative yields (either from 939 

mounting incremental costs incurred or mounting incremental opportunity reward costs 940 

eschewed). Optimal behavior should instead try as best as possible to map an efficiently 941 
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enumerated net value (i.e., positive or negative subjective value) onto the appropriate action. 942 

Across decision-making contexts, humans are usually biased toward more desirable information 943 

(Sharot and Garrett, 2016), to the extent that an insensitivity to reward has been reported as a 944 

robust computational phenotype of psychiatric conditions such as depression (Garrett et al., 2014; 945 

Pedersen et al., 2021). In the present study, and in at least two separately reported human studies 946 

using the same task settings (Volz et al., 2017; Shapiro and Grafton 2020), participants 947 

consistently overweighted reward when making choices. More recent evidence using transiently 948 

disruptive cortical stimulation further proposes that reward sensitivity might not simply reflect 949 

impulsivity, but a cortically-mediated model of a person's primary goal in a value-based setting 950 

(i.e., capture reward; Rolle et al., 2022). Integrating these findings with our findings under the 951 

above value-based framework, it might therefore be physiologically efficient to prioritize reward 952 

information, and reserve effortful scrutiny and juxtaposition involving multiple streams of 953 

information for moments of conflict. Reward sensitivity also generalizes to dynamic learning tasks, 954 

where recent studies report that people learn faster from positive-vs-negative prediction errors 955 

(Lefebvre et al., 2017; Garrett and Daw, 2020; Dundon et al., 2020). Consistent with our present 956 

findings, this learning asymmetry attenuates (i.e., learning from negative outcomes occurs more 957 

rapidly) when sympathetic activity is elevated (Garrett et al., 2018; Dundon et al., 2020), to the 958 

extent that sympathetic reactivity even predicts individual participants who adjust their behavior 959 

more optimally to declining changes in their environment (Dundon et al., 2020). Whether the 960 

neural sources for cardiac-sympathetics serve common mechanisms to resolve uncertainty and 961 

address biases across decisions and learning is an exciting avenue of future research. 962 

 963 

We additionally observed a collaborative association involving neural dynamics in the alpha band. 964 

Broadly considered to reflect inhibition (Jensen and Mazaheri, 2010) and visual spatial attention 965 

(Worden et al., 2000), alpha power also shows a correspondingly flexible and goal-directed profile 966 
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in cognitive processing. For example, during spatial recall, alpha power can code spatial targets 967 

in the absence of external information (MacLean et al, 2019) consistent with post-perceptual goal 968 

maintenance. If participants are cued to switch recall to a different memory location after memory 969 

arrays disappear, alpha dynamics can likewise switch from encoding the initial target to encoding 970 

the new one (van Moorselaar et al., 2018). Alpha power can additionally signal a person's 971 

willingness to take future risks (Zhang et al., 2018), suggesting it also responds in more value-972 

based settings. Together, these findings are consistent with our interpretation that late alpha 973 

power mediated "fair assessment", i.e., a shift in attention to process additional (cost) information 974 

alongside the reward signal information. Interestingly, we observed less association between 975 

steady-state visually-evoked potentials (SS) and DDM parameters. This might be due to task 976 

requirements. Earlier work implicates SS in coding information relevant for DDM decision 977 

boundaries (O'Connell et al, 2012), albeit in tasks requiring perceptual and not value-based 978 

decisions. Our task used large visually unambiguous stimuli and created conflict that was value-979 

based (subjective) rather than perceptually driven. Recent human (Zhigalov and Jensen, 2020) 980 

and nonhuman (Bastos et al., 2020) work dissociates alpha signals from modulating gain of 981 

sensory information, consistent with the idea that these signals have greater relevance for 982 

behavioral responses in value-based settings. Our paradigm modifications might also explain the 983 

associations we observed principally involving visual attention (alpha) signals over those 984 

associated with cognitive control (theta) and decision making (delta). Given the varied possible 985 

sites of cortical control for the sympathetics (Dum et al., 2019), future work should not disregard 986 

any potential association between these latter signals and sympathetics, and perhaps modify the 987 

approach-avoidance paradigm to exploit them more selectively. 988 

 989 

We lastly speculate on a network of substrates that might underly behaviorally relevant interaction 990 

between the neural (alpha) and cardiac-sympathetic (contractility) signals in states of high conflict. 991 
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It is highly likely that our observed neural dynamics in the alpha band were facilitated by 992 

noradrenergic (NE) projections from the locus coeruleus in the brainstem (LC; Rajkowski, 1993; 993 

Aston-Jones and Cohen, 2005; Joshi and Gold, 2020). The LC-NE system innervates cortical 994 

areas involved in orienting attention (e.g., parietal; Foote and Morrison, 1987), responding to 995 

arousal (Sara and Bouret, 2012), goal-relevant stimuli, and exploration (Aston-Jones and Cohen, 996 

2005), all of which are likely relevant during moments of conflict. LC-NE can also broadly influence 997 

sympathetic activity (Samuels and Szabadi, 2008b). However, when it comes specifically to 998 

cardiac activity, evidence from both animal-optogenetic (Wang et al., 2014) and human-imaging 999 

(Wood et al., 2017) studies suggest LC-NE influences heart rate via vagal (i.e., parasympathetic) 1000 

channels, contrasting with our specific cardiac assay—contractility (inotropy)—which primarily 1001 

tracks beta-adrenergic sympathetic drive to the heart (see discussion in Stump et al., 2023; also 1002 

see methods for how, in our study, we corrected for influences of heart rate and respiratory cycle). 1003 

A key subcortical controller of this cardiac-sympathetic response is the rostral ventrolateral 1004 

medulla in the brainstem (RVLM; Mandal et al., 1990; Shapoval et al., 1991; Kulkarni et al., 2023), 1005 

which is the primary source of organ-specific sympathetic preganglionic neurons. RVLM 1006 

principally receives inputs from the cortically modulated hypothalamus (Dum et al., 2019; Kono et 1007 

al., 2020; Koba et al., 2022). LC has few direct efferent connections with RVLM, although it might 1008 

communicate indirectly via its projections to the paraventricular nucleus of the hypothalamus. The 1009 

behavioral changes we observed when neural (alpha) and cardiac-sympathetic (contractility) 1010 

signals interact may therefore reflect two subcortical nodes (LC-NE and RVLM) activating 1011 

concurrently. Alternatively, alpha-contractility associated collaboration may ultimately be 1012 

mediated by interactions at the cortical level.  1013 

 1014 

It is important to note that while our current data offer an important step toward resolving whether 1015 

complex cognition actively recruits peripheral responses, our findings are correlational, and 1016 
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should not be taken as evidence of direct mechanistic causality. Future studies incorporating 1017 

selective modulation of peripheral responses, such as cardiac-specific pharmacological 1018 

interventions, could further probe the causality and directionality of these interactions. Future 1019 

studies should also aim to clarify the role of peripheral responses alongside brain functions not 1020 

examined here, particularly subcortical activity and alternative measures of gain. In addition, while 1021 

the DDM provides an elegant and intuitive decomposition of decision behavior, it remains a 1022 

hypothesis of underlying mechanistic function and can potentially carry the risk of over-1023 

parameterization (Ratcliff et al., 2016). A more direct paradigm will be needed to replicate and 1024 

validate our mechanistic interpretations. 1025 

 1026 

Concluding remarks 1027 

We reveal that fair assessment of all available information (i.e., not just rewards) during a high-1028 

conflict decision potentially requires orchestration of both cognitive mechanisms and sympathetic 1029 

activity. In terms of clinical relevance, autonomic function is vulnerable to neurodegenerative 1030 

conditions such as Alzheimer's and Parkinson's disease (Samuels and Szabadi, 2008b; 1031 

Engelender and Isacson, 2017). Future research may therefore test if features of cross-modal 1032 

collaboration during complex cognition can assist with early detection. 1033 
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 1372 

Figure 1 Approach-avoidance and drift-diffusion model frameworks 1373 

(A) In the approach-avoidance paradigm participants integrate a reward and a cost in a "take-1374 

both-or-leave-both" choice regarding a compound offer. Varying the levels of reward and cost 1375 

over multiple offers affords a two-dimensional logistic framework that can identify subjective value 1376 
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(p(approach); red-green gradient) and "conflict" (aqua-fuchsia gradient) across the decision 1377 

space. Conflict is maximal near a "threshold" (dashed line), i.e., as p(approach) nears 0.50. Four 1378 

example offers are shown (a–d) that vary in subjective value and conflict. 1379 

 1380 

(B) High conflict (fuchsia) typically makes choices less consistent with lengthier RT.  1381 

 1382 

(C) The slope of the "threshold" characterizes a sensitivity for reward or cost. Fitting the logistic 1383 

model separately for each participant accounts for such sensitivities prior to enumerating where 1384 

in decision space they subjectively experience conflict. 1385 

 1386 

(D) The drift-diffusion model assumes choice and RT data can be modeled as a sequential 1387 

sampling process; following an initial nondecision time (t), the decision process begins at starting 1388 

point (z) and accumulates evidence at rate (v) toward one of two boundaries that determines the 1389 

choice (in our case, approach (+) or avoid (-)); boundaries are separated by a distance (a). 1390 

Parameters provide a fine-grained assay of behavior, such as any bias toward one choice (z), 1391 

how rapidly evidence is integrated during decision formation (v) or the amount of evidence 1392 

required before a choice is executed (a wider boundary denoting a more conservative criterion). 1393 

States of high conflict might impact any or all of these parameters. We depict simulated 1394 

schematics (n=1000 trials) of singularly changing the drift rate or the boundary separation. In 1395 

each, we fixed a set of baseline parameters (t=0.30; v=1; a=2; z=0.60), and then increased or 1396 

decreased v or a by 40%. Note that in each panel, there is a bias toward approach (z>0.50), and 1397 

identifiably different features in the RT distributions of approach and avoid resulting from the 1398 

parametric changes. For more in-depth examples, see Ratcliff and McKoon (2008). 1399 
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 1400 

 1401 

 1402 

Figure 2 Graded approach-avoidance paradigm reveals fine-grained behavioral responses 1403 

to conflict 1404 

(A) Participants approached (accept) or avoided (reject) offers pairing varying levels of monetary 1405 

reward with varying levels of painful electric shock (communicated via size of relevant bar) with a 1406 

single response during gradual onset of stimuli; see Methods for success, payout and error trials. 1407 

 1408 

(B) Participants integrated reward (rew [b1, Eq. 1]) and cost (shk [b2, Eq. 1]) into choices, with a 1409 

greater weighting of reward (|rew|-|shk|>0), and a bias toward approach (int [b0, Eq. 1]) indicating 1410 

reward sensitivity. Error bars are standard error of the mean across parameter estimates for each 1411 

subject. ***p<0.001, **p<0.01. 1412 

 1413 

(C) Choice consistency (Vchoice) was lower and median response time (med. RT) was longer for 1414 

states identified (using logistic choice models) as high in conflict. ***p<0.001. 1415 

 1416 

(D) In states of high conflict, participants had a wider boundary (a), had a lower rate of evidence 1417 

accumulation (v), had less of a bias toward approach (starting point (z)) and had a slightly shorter 1418 

nondecision time (t). Boundary units are arbitrary "evidence", and drift rate is in units of "evidence" 1419 

per second; starting point (z) is on a logit scale where positive values (i.e., >0.50) are closer to 1420 

approach boundary (see caption for Figure 1D). Nondecision time (t) is measured in seconds. 1421 
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Digitized violin plots contain 400 samples from parameter posterior. Summary data of posteriors 1422 

and key comparisons are in Table 2-1. Vertical white lines span posterior HDI. *credible Bayesian 1423 

difference between two parameters (θ1,θ2), i.e., 0∉HDI(D(θ1,θ2)), where D=[p(θ1∣X1)−p(θ2∣X21424 

)].  1425 

 1426 

 1427 

 1428 

Figure 3 Interactive cross-modal collaboration associated with the decision boundary of 1429 

the drift-diffusion model (DDM) 1430 

(A) Separate flicker rates applied to reward and cost stimuli afforded capture of steady-state 1431 

visually evoked potential timeseries for reward (SSrew) and cost (SScst). In the "symmetry" 1432 

timeseries (SSsym), higher values reflect greater symmetry (more equal power) between the two 1433 

SS timeseries (-1*ln|(SSrew-SSshk|)). Timeseries were averaged in early [0 to 1 s] and late [1 s to 1434 

2 s] time windows relative to offer onset. 1435 

 1436 

(B) Lateralized stimuli afforded capture of alpha-power timeseries relevant for reward (alpharew) 1437 

and cost (alphacst). In the "symmetry" timeseries (alphasym), higher values reflect greater symmetry 1438 

(more equal power) between the two alpha timeseries (-1*ln|(alpharew-alphashk|)). Timeseries were 1439 

averaged in early [0 to 1 s] and late [1 s to 2 s] time windows relative to offer onset. 1440 

 1441 

(C) Posterior parietal delta and frontal-midline theta power. Timeseries were averaged in early [0 1442 

to 1 s] and late [1 s to 2 s] time windows relative to offer onset. 1443 
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 1444 

(D) The pre-ejection period (PEP) is recorded with combined impedance cardiography (ICG) and 1445 

electrocardiography (EKG); shorter PEP indicates increased sympathetic beta-adrenergic 1446 

myocardial contractility. Our contractility estimates, where higher values reflect greater cardiac-1447 

sympathetic drive (contractility=-1*ln(PEP)), were averaged across each heartbeat in a [0 to 2 s] 1448 

time window relative to offer onset. 1449 

 1450 

(E) Singular models for DDM parameters {a,v,z,t} modeled by a single regressor (x1; i.e., either a 1451 

neural variable or contractility), separately for states of low and high conflict (Eq. 6). Six models 1452 

improved fits beyond the baseline model in Figure 2D. Fits assessed relative to baseline with 1453 

improvements in deviance information criterion (-ΔDIC), positive values reflecting better fit. 1454 

Double-headed (↔) arrow denotes an association that could be negative or positive. 1455 

 1456 

(F) Cross-modal models for DDM parameters {a,v,z,t} modeled by either additive or interactive 1457 

models winnowed from the fits in Figure 3E. Additive models (empty circles) modeled DDM 1458 

parameters by a neural variable (x1) in addition to contractility (cont.), separately for states of low 1459 

and high conflict; 16 regressors in total. Interactive models (circles with crosses) also included a 1460 

third regressor for the product of the neural signal and contractility [Eqs. 7–8]. Six models 1461 

improved fits beyond the best-fitting model in Figure 3E. 1462 

 1463 

(G) Complement models (Eq. 9) asked if the fit of the best-fitting cross-modal model (which 1464 

included alphashk; marked "m1" in Figure 3F) could be improved by adding the complement (i.e., 1465 

set difference) of cross-modal models using neural variables that passed the singular model 1466 
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stage, using their best-performing forms (with or without interactions), marked with “m2” in Figure 1467 

3F. Each model improved fits beyond the best-fitting model in Figure 3F. In the best overall fitting 1468 

complement model (marked with *), DDM parameters were modeled by four regressors: alphashk, 1469 

alphasym, contractility and alphasym*contractility.  1470 

 1471 

(H) Proxy of variance explained (R²) by best fitting baseline, singular, cross-modal, and 1472 

complement models across varying RT bin sizes. Each trial’s RT was simulated using a Wiener-1473 

like process with relevant model parameters and regressors, and R² values were derived from 1474 

Pearson correlations between RT bin medians (observed vs simulated). 1475 

 1476 

 1477 

 1478 

Figure 4 Dynamics of the best-fitting complement model 1479 

(A–D) Parameter posteriors from best-fitting (complement) model of DDM parameters. Most 1480 

neural and cardiac-sympathetic relations involved the decision boundary (a). In both low- and 1481 

high-conflict states, wider boundaries were related to greater desynchronization of alphashk, 1482 

greater symmetry in alpha (alphasym) and increased contractility. Unique to states of high conflict, 1483 

the boundary showed additional positive association with the alignment of cross-modal signals 1484 

(alphasym*contractility(cont.)). Digitized violin plots contain 400 samples from parameter posterior. 1485 

Summary data of posteriors are in Table 4-1. Vertical lines span highest density interval (HDI) of 1486 

coefficient posterior, and are white if HDI does not contain 0 (also marked with *), black otherwise. 1487 

 1488 
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(E) Parameter posteriors from a model to discretize the neural and cardiac interactions associated 1489 

with the decision boundary. Boundary is widest (relative to the baseline, low conflict, low late 1490 

alphasym and low contractility—Δ boundary) in high conflict when alphasym and contractility are 1491 

both high. + and - symbols respectively reflect high and low (for physiology signals, relative to 1492 

participant medians). Digitized violin plots contain 400 samples from parameter posterior. 1493 

Summary data of posteriors and key comparisons are in Table 4-2. Vertical lines span the highest 1494 

density interval (HDI) of coefficient posterior and, are white if HDI does not contain 0. *** denotes 1495 

this posterior was credibly larger than all others depicted, i.e., 0∉HDI(D(θ1,θ2)), where D=[p(θ11496 

∣X1)−p(θ2∣X2)] for all possible values of θ2. 1497 

 1498 

(F) Control models substituted proxy measures for local and global brain activity for all regressors 1499 

featuring contractility in the best-fitting complement model. The model substituting contractility 1500 

with global field power (GFP) was a slightly better fit. However, inspection of the parameters show 1501 

opposing associations with the boundary (marked by black arrows). That is, GFP's interaction 1502 

with alphasym was associated with a contraction of the decision boundary. Summary data of 1503 

posteriors for the GFP control model in Table 4-2. 1504 

 1505 

(G) Phase-angle timeseries of alpha contralateral to reward (alpharewθ - top) and cost (alphashkθ - 1506 

bottom) in high conflict, averaged across subjects separately for trials that were higher (dark red) 1507 

or lower (light red) than their median contractility. 1508 

 1509 

(H) Summarizing phase coherence (absolute phase-angle value |θ|) across early and late time 1510 

windows, we see a three-way interaction whereby late coherence diminishes significantly in high 1511 

contractility, and only in the alpha timeseries contralateral to reward. 1512 
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