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Abstract

As evidence mounts that the cardiac-sympathetic nervous system reacts to challenging cognitive
settings, we ask if these responses are epiphenomenal companions or if there is evidence
suggesting a more intertwined role of this system with cognitive function. Healthy male and female
human participants performed an approach-avoidance paradigm, trading off monetary reward for
painful electric shock, while we recorded simultaneous electroencephalographic (EEG) and
cardiac-sympathetic signals. Participants were reward sensitive, but also experienced approach-
avoidance "conflict" when the subjective appeal of the reward was near equivalent to the revulsion
of the cost. Drift-diffusion model parameters suggested that participants managed conflict in part
by integrating larger volumes of evidence into choices (wider decision boundaries). Late alpha-
band (neural) dynamics were consistent with widening decision boundaries serving to combat
reward-sensitivity and spread attention more fairly to all dimensions of available information.
Independently, wider boundaries were also associated with cardiac "contractility” (an index of
sympathetically mediated positive inotropy). We also saw evidence of conflict-specific
"collaboration" between the neural and cardiac-sympathetic signals. In states of high conflict, the
alignment (i.e., product) of alpha dynamics and contractility were associated with a further
widening of the boundary, independent of either signal's singular association. Cross-trial
coherence analyses provided additional evidence that the autonomic systems controlling cardiac-
sympathetics might influence the assessment of information streams during conflict by disrupting

or overriding reward processing. We conclude that cardiac-sympathetic control might play a



critical role, in collaboration with cognitive processes, during the approach-avoidance conflict in

humans.

Significance statement

Complex behavior likely involves coordination across multiple branches of the human nervous
system. We know much of how cortical systems of the brain adapt to cognitive challenges. In
parallel, we are beginning to understand that autonomic mediated responses in peripheral
organ (cardiac-sympathetic) systems might also play an adaptive role in cognition, particularly
complex decisions. We probed if such signals have separate or collaborative associations with
behavior, using computational models of decision behavior, brain (electroencephalography) and
cardiac-sympathetic (contractility) data. Our evidence suggests that these systems might work
together, as humans attend to all available information when resolving particularly conflicting
decisions. The cardiac-sympathetic system may be part of a coordinated response that helps

balance the human tendency to overly focus on rewards.



Introduction

Our nervous system and coupled body evolved together to be flexibly responsive, allowing rapid
and often anticipatory changes to meet a broad array of cognitive and physical challenges
presented in dynamic environments. Decades of research in cognitive neuroscience have
characterized flexible cognitive mechanisms and underlying cortical systems for preserving goal-
directed function when external circumstances change. Meanwhile, autonomic reactivity in
peripheral organ systems, such as the cardiac-sympathetic branch, is well documented in tasks
requiring momentary goal-directed changes in mental and physical exertion, showing appropriate
reactivity (just enough, just in time) to tasks at hand (Richter et al., 2008; Richter et al., 2016;
Stump et al., 2023). More recent evidence extends cardiac-sympathetic reactivity to complex

cognitive

challenges such as value-based decision making (Dundon et al., 2020, 2021). However, it
remains unclear whether these peripheral responses are independent of cortically mediated
cognition or if the regulatory systems controlling these responses are more integrally involved in
cognitive processes. A crucial next step is to therefore pinpoint the specific cognitive mechanisms

that the cardiac-sympathetic system aligns with.

Emerging event-related evidence suggests cardiac-sympathetic reactivity might be particularly

relevant in value-based situations that involve some manner of "conflict" and where decisions
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must incorporate negative information or costs (Ogden et al., 2019; Dundon et al., 2020; Dundon
et al., 2021). While such a reactivity profile could be epiphenomenal, it is also consistent with a
broader literature showing sympathetic involvement when humans face increasing uncertainty
(Palacios-Filardo and Mellor, 2019) and difficulty (Richter et al., 2008), or a requirement to explore
alternative goal-relevant stimuli (Aston-Jones and Cohen, 2005) with a specific emphasis on
incorporating negative information (Garrett et al., 2018). Together, these findings suggest cardiac-
sympathetic reactivity reflects a process that may be centrally generated and part of a coordinated
response that helps balance the human tendency to overly focus on rewards (Garrett et al., 2014;
Sharot and Garrett, 2016; Pedersen et al., 2021). However, to date, no study has tracked the
computational-behavioral and neural processes relevant for value-based conflict and reward
sensitivity, and thereafter probed whether reactivity in cardiac-sympathetics is independently or

collaboratively associated with behavior or cortical activity.

In the present work we therefore use a modified version of the approach-avoidance paradigm
(Champion, 1961; Elliot and Thrash, 2002). This paradigm creates states of high "conflict" when
the appeal of a reward is near equivalent to the revulsion of a cost (Figures 1A-B). It can also
identify sensitivity toward a particular value dimension, such as reward sensitivity (Volz et al.,
2017; Shapiro and Grafton, 2020; Pedersen et al., 2021; Figure 1C). We configured the paradigm
to additionally record how neural perceptual signals measured by electroencephalography (EEG)
track reward and cost information, specifically sensory gain (steady-state visually evoked
potentials; SS; Pfurtscheller and Aranibar, 1977; Galloway, 1990; Miller et al., 1998; Miiller et al.,
2006; Gulbinaite et al., 2019) and goal-directed attention (spatially responsive dynamics in the
alpha band; Foxe and Snyder, 2011; Klimesch, 2012; Wang et al., 2016). We simultaneously
recorded beat-by-beat estimates of contractility (inotropy), which is primarily mediated by

noradrenergic sympathetic drive (after adjusting for heart and respiratory rate) and associated
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with cardiac reactivity to challenge (Lewis et al., 1974; Light, 1985; Linden, 1985; Newlin and
Levenson, 1979; Sherwood et al., 1986, 1990; Callister et al., 1992). To further decompose
behavior, and extract fine-grained assays of behavior to correlate with physiology signals, we
fitted the drift-diffusion model (DDM) to choice and response time (RT) data (Figure 1D). Initially
considered in perceptual contexts (Usher and McClelland, 2001; Ratcliff and McKoon, 2008;
Forstmann et al., 2016), parameters from the DDM are an increasingly useful tool for
disambiguating the underlying reasons for lengthier RT in more complex value-based contexts
(Peters and D’Esposito, 2020; Shahar et al., 2019; Ballard and McClure, 2019; Colas, 2017;

Fontanesi et al., 2019; Dundon et al., 2023; Figure 1D).

[Figure 1 here]

Our primary aim was to establish how human patrticipants respond to conflict at the computational-
behavioral level. We thereafter tested if cardiac-sympathetics are associated with relevant DDM
parameters in a manner that suggests redundancy (i.e., epiphenomenal), independent function
or collaboration (i.e., interaction) with perceptual neural signals. In particular, we examined if
cardiac-sympathetics aligned with neural processes associated with reward sensitivity, i.e.,
increased gain of or attention toward either cost information or more symmetric processing of

reward and cost.

Materials and Methods



We recorded continuous multi-channel electroencephalography and cardiac-sympathetic
physiology (combined electrocardiography and impedance cardiography) while human
participants made approach-avoidance choices regarding offers that varied trial-by-trial in reward
and in cost. Each "take-it-or-leave-it" trial offer gradually presented a monetary reward ranging in
value from $0.01 to $1.50 and a shock cost ranging in value from minimal to near maximum
bearable pain (see trial schematic in Figure 2A). We configured the paradigm to additionally
record how EEG signals track reward and cost information, both in terms of sensory gain (steady-
state visually evoked potentials; Figure 3A) and goal-directed attention (spatially responsive
dynamics in the alpha band; Figure 3B). We additionally divided neural assays into early and late
time windows, to capture the dynamics of conflict as decisions unfold, given recent evidence that

they might be time-sensitive Shapiro and Grafton (2020).

Participants

We recruited an initial sample of 33 human participants, via both word-of-mouth and an online
participant recruitment portal operated by the University of California, Santa Barbara (UCSB). We
removed six participants from all analyses: One subject accepted more than 90% of offers, two
participants’ EEG data had an artefact in more than 50% of epochs, and one further subject
satisfied both screening criteria. In addition, we removed two participants due to excessive noise
in their impedance cardiography data. We accordingly report findings from a final sample of 27
participants. This group had a mean (standard deviation) age of 21.4 (3.3), and 17 were female.
All participants were right-handed and attested to no history of cardiovascular or related diseases.
Subject remuneration was $20 per hour base rate, with a bonus payment determined by their
approach-avoidance behavior, which approximately corresponded to an additional $13.50 per

subject. All testing took place during a single session in a quiet, dimly lit experimental suite and



all procedures received approval from the Institutional Review Board at UCSB. Participants

provided informed written consent, prior to participating.

Approach-avoidance paradigm

Overview. We used a modified version of the approach-avoidance task previously employed in
nonhuman primate (Amemori and Graybiel, 2012, 2015) and human (Volz et al., 2017; Shapiro
and Grafton, 2020; Dundon et al., 2021) experiments. The main modification was the
incorporation of reward and cost stimuli with different frequency flicker rates and spatial
positioning to facilitate identification of specific cortical activity. Stimuli also appeared gradually
on each trial, to facilitate identification of early and late responses. (O'Connell et al., 2012). Similar
to prior studies, participants approached or avoided varying levels of monetary reward paired with
varying levels of painful electric shock, in trial-by-trial "take-both-or-leave-both" offers. Participants
made a total of 352 approach-avoidance choices (split into eight blocks of 44). Their head position
was fixed by an adjustable chin and forehead rest, to maintain a viewing distance of 57 cm from
the stimulus presentation screen: an ASUS VS278 monitor, viewing area 60 cm width by 33.5 cm
height, refresh rate of 240 Hz (inter-frame interval=.004 s). We advised participants to move their
bodies as little as possible, to prevent motion-related confounds entering the physiology

recordings.

Trial structure. Each approach-avoidance trial gradually presented an offer to participants, in
which two bars communicating the level of reward and cost slowly appeared. Responses were
recorded with button press. The trial schematic is depicted in Figure 2A. During each trial,
participants fixated their eyes on a central point (RGBimin=omax=11=[.750 .750 .750];

diameter=0.221°). The background color remained black (RGBmin=o,max=17=[0 O 0]) at all times,
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except for payout trials (see below). Offers comprised four sequential events: (i) baseline, (ii) offer
onset, (iii) offer offset and (iv) feedback. (i) Each offer initiated with a baseline period with a
duration between 420 and 540 frames (inclusive) drawn with discrete uniform probability on each
trial (approx. 1.75 s to 2.25 s). Baseline onset was signified by the immediate appearance of two
vertically oriented rectangular dot arrays, each spanning 7.30° width by 27.8° height, comprised
of 79 columns and 322 rows of dots (dot diameter=.056°), with centroids positioned at a horizontal
eccentricity +/- 3.75° from the central fixation point. (ii) Following baseline, during offer onset, the
offer bars gradually communicated the magnitude of the offer’s value dimensions, with one bar
communicating the level of offered reward and the other bar communicating the level of incurred
shock. We drew a different offer on each trial from a two-dimensional decision (reward-by-shock)
space with uniform probability, and communicated the magnitude of each dimension by gradually
filling in an area of both bars with a relevant offer color (khaki or blue; one color per offer bar).
Specifically, contiguous rows of dots, equally portioned above and below the centroid of each
offer bar, gradually changed into one of two offer colors. The number of rows changing into an
offer color indicated the magnitude offered in that dimension, i.e., the offered reward (no rows:
$0.01, to all rows: $1.50) and the offered shock (no rows: minimum pain, to all rows: maximum
bearable pain—see "costs" section below). Counterbalanced across participants, reward and
shock mapped onto one color for the entire experiment, while color laterality was determined with
0.50 uniform-probability before each trial. Offer onset duration was four seconds, with color
change controlled by reward and shock gradients that respectively changed dot colors from
baseline grey (RGBmin=o,max=11=[.375 .375 .375]) to peak offer color (khaki, RGBmin=0max=11=[-632
.586 .351]; blue, RGBjmin=0,max=11=[.328 .616 .375]) at even step sizes in RGB space over the offer
onset frames (n=960). (iii) Following peak onset, during offer offset, offer colors gradually returned
to baseline grey over a two-second period. We instructed participants to respond as soon as they

decided whether to approach or avoid an offer, with a time limit of the end of offer offset.



Participants registered their responses by pressing z with the index finger of their left hand, or m
with the index finger of their right hand. The mapping of z and m onto approach and avoidance
responses was fixed for each block of 44 trials, determined prior to the block with 0.50 uniform
probability. (iv) Following offer offset, participants observed a feedback screen for one second
(nine seconds for payout trials, see below). As depicted in the lower portion of Figure 2A, a
"successful" response, i.e., a single response executed during offer onset or offset, led to a
confirmation feedback screen containing a snapshot image of the offer (at peak offer colors),
accompanied by a written confirmation of their choice. If participants responded more than once,
responded during the baseline (pre-onset), or failed to execute any response before the final
frame of offer offset, a warning appeared on the screen indicating the relevant error, along with
the lateralized response prompts (lower portion of Figure 2A). We stored all error trials and
reissued them to participants after the eighth block, to ensure that errors could not be a strategy
to circumvent specific offers. All feedback screens (successful, error or payout (below)) also
included prompts to remind participants which colors mapped onto the different reward
dimensions (indicated with a lightning bolt (shock) or dollar symbol (reward) overlaying the
relevant bar), and which button response mapped onto which choice for the given block. This
screen was also displayed prior to each block. Finally, offer bars flickered throughout each trial,
either left: 12 Hz, right: 13.33 Hz or vice versa, determined with 0.50 uniform probability. We
presented all-stimuli with customized scripts in MATLAB (Version 2018a, The Mathworks Inc.,

Natick, 'MA, USA, https://www.mathworks.com/products/matlab.html) using functions from

PsychToolbox-3 (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). Successfully registered choices
were coded either 1 (approach) or 0 (avoid), and response time (RT) was the time (in seconds)

between offer onset and choice execution.
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Costs: Shocks offered to each participant were calibrated a priori in order to range in pain from
an individualized subjective minimum to near-maximum level. We administered the costs with
cutaneous electrical stimulation (1 s duration; f=100 Hz; A=2 ms), via two electrodes on the back
of the hand. We used a constant current stimulator and train generator (respectively, models
DS7A and DG2A, Digitimer, Great Britain), and modulated pain via voltage. We used an identical
calibration procedure to previous studies (Shapiro and Grafton, 2020; Dundon et al., 2021). That
is, we started 1 mV and gradually increased voltage until participants reported (1) a perception of
the shock, then (2) when the voltage began to cause discomfort, and then finally (3) when the
voltage caused unbearable pain. Once a level of unbearable pain was reported, we asked them
to confirm that this was the maximum pain they could tolerate. This prompt usually spurred
participants to accept a further increase in voltage. Once they confirmed reaching an unbearable
level of pain, we administered 14 sample shocks, ranging in voltage between (2) and (3) above,
and participants reported the level of pain on a scale of 0 to 10. We repeated this entire procedure
twice to account for habituation. Shocks offered to each participant then ranged from a lower
bound of (2) above to an upper bound of the second estimate of (3) above. We also fitted a
sigmoid function to the second set of pain ratings, to first estimate shocks of 0.05, 0.25, 0.50,
0.75, and 0.95 intensity (as per their individualized scales) to provide as sample shocks. We also
estimated where their 0.80 level of pain was and excluded trials offering pain equal or greater to

this level from payout trials (see below).

Payout trials. For safety reasons, we did not administer any electric shocks during the testing
session while participants wore physiology electrodes. We instead postponed payout on an
infrequent subset of trials, in line with previous work recording physiology signals during similar
approach-avoidance paradigms (Shapiro and Grafton, 2020; Dundon et al., 2021). Prior to testing,

we selected eighteen "payout trials" (5.11%) with uniform probability across the entire set of offers,
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provided the offered shock was below 80% of a subject’'s maximum pain level. The baseline,
onset and offset sequence of payout trials were identical to non-payout trials. However, during
the feedback section of payout trials (extended from one to nine seconds), the screen changed
from black to red (RGBmin=0,max=1j=[1 O O]; left lower portion of Figure 1C) and participants learned
that the monetary reward and shock from that offer would be administered following the testing
session (were that offer approached) or that the values would have been administered (were that
offer avoided). If participants made a response error during a payout trial, they instead saw the
error feedback screen, and the payout trial was added to the list of trials to be reissued. We
instructed participants that payout trials could not be predicted before registering a response and
to treat each offer as a potential payout trial. Previous work reports that payout trials do not affect

behavior on subsequent choices (Shapiro and Grafton, 2020; Dundon et al., 2021).

Paradigm configuration for perceptual signals. We configured the paradigm to record how neural
perceptual signals measured by EEG track reward and cost information, both in terms of sensory
gain (steady-state visually evoked potentials; Figure 3A) and goal-directed attention (spatially
responsive dynamics in the alpha band; Figure 3B). The former was achieved by flickering the
offer bars throughout each trial, one at 12 Hz, the other at 13.33 Hz. This meant that each trial
had a unique frequency "tag" associated with reward and cost. For the latter, we lateralized the
reward and cost stimuli to exploit spatially responsive alpha dynamics. For the specific filtering

procedure in each case, see the Neural recordings section below.

Behavioral analyses

Overview. We performed initial behavioral analyses to evaluate whether participants were reward

sensitive in addition to whether they confronted approach-avoidance "conflict" in established
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regions of decision space when performing our task. To conform with previous studies, we used
a logistic framework employing maximum-likelihood methods to compute subjective value and alll
related measurements. All other modeling and statistical tests were performed using hierarchical
Bayesian models, in which posteriors were sampled and model fits computed using a combination

of HDDM (Wiecki et al., 2013) and pymc3 functions (Salvatier et al., 2016) in Python.

Logistic choice models. We used a logistic framework previously reported (Shapiro and Grafton,
2020; Dundon et al., 2021). This framework fits two-dimensional logistic models separately to
each individual subject's set of choices (Y), modeling p(approach) as a function of the
corresponding set of rewards (X1) and shock costs (X2) offered, with a standard logit function,

i.e.:

Y=|Ogit’1(bo+ b1*X1+b2*X2) .

[Eq. 1]

We estimated the maximum likelihood parameters of each participant's model using the mnrfit

function in MATLAB after first normalizing X1 and X2 to z-score ranges within participants.

Reward sensitivity in approach-avoidance contexts is demonstrated by choices that overweight
the reward relative to the offered costs (Figure 1C). In our paradigm we uniformly sampled the
reward and cost dimensions, the latter of which was calibrated to span an individualized minimum
to maximum (see above section on "Costs" in the section describing the paradigm). We

accordingly deduce that participants were reward sensitive within this task context if their logistic
13



choice coefficients (from Eqg. 1) showed a bias toward approach (be>0) or an overweighting of the

reward coefficient (Jbi|>|b2|).

Approach-avoidance conflict is highest near the region of decision space where participants are
as likely to approach as they are to avoid (Figure 1A). We assessed the level of conflict presented
by each trial, accounting for individual differences in subjective valuations, using a previously
employed procedure (Shapiro and Grafton, 2020; Dundon et al., 2021). The method uses discrete
classification, categorizing trials as either high or low in conflict. For this, from the coefficients of
each patrticipant's logistic choice model (from Eqg. 1), we first computed the subjective value (the
log odds of approach) of each trial as SVi=bo+bi1*x1«+b>*x2x, where x1x and x2x are respectively
the reward and cost offered on trial (k), normalized to z-score ranges within participants. In this
way SV>0 reflects p(approach)>0.50 and vice-versa. We then classified a trial as high conflict if
it was either (a) approached, but where its SV was below the median SV of all approached trials,
or (b) avoided, but where its SV was above the median SV of all avoided trials. These trials are
depicted schematically by the fuchsia regions in Figure 1. All remaining trials were classified as
low conflict, depicted by the aqua regions in Figure 1. For each trial, its SV and its binary degree
of conflict (high vs low) were estimated prior to any screening due to EEG or sympathetic artefact,

described in the section below.

We performed additional tests to support that the logistic framework had identified states of high
and low conflict. One indication of high conflict is a reduction in choice "consistency". For this, we
used a nonparametric assessment of the deviation in choices appearing in bins of the decision
space. We divided each patrticipant's decision space into a ten-by-ten grid of equal bins. We

enumerated choice consistency for a given bin as the variance in choices across all offers
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appearing in it. Choices were numerically assigned x=0 for avoid and x=1 for approach, and
variance (V) computed across n trials in each bin as me:%ZZ:,(xk-)'(). Positive variance values

reflect lower consistency (i.e., different choices registered at different times for similar offers). We
compared (between participants) regions identified as high and low conflict (see above) using
each participant's average consistency score across all bins in a region. An additional indication
of high conflict is lengthier RT which we defined as the time between the onset of the offer and
the registration of a response. We accordingly compared (between participants) trials identified

as high and low conflict, comparing participants' region specific median RT.

Computational modeling framework

Overview. Our computational modeling aimed to assess whether states of high conflict shaped
parameters associated with choice behavior, and whether key parameters were additionally
associated with trial-by-trial fluctuations in neural signals, a cardiac-sympathetic signal or the

alignment (interaction) of neural and cardiac signals.

HDDM. We decomposed behavior using a Hierarchical-Bayesian extension of the drift-diffusion
model (DDM; Figure 1D). The DDM classically proposes that choice and RT data are underscored
by a noisy evidence accumulation process that terminates at a decision criterion (boundary).
Following an initial nondecision time (t), the decision process begins at starting point (z) and
accumulates evidence at rate (v) toward one of two boundaries that determines the choice (in our
case, approach (+) or avoid (-)); boundaries are separated by distance (a). These parameters
provide a fine-grained assay of behavior, such as likely bias toward one choice (z), how rapidly
evidence is integrated during decision formation (v) or the amount of evidence required before a

choice is executed (a wider boundary denoting a more conservative criterion). With the
15



Hierarchical-Bayesian extension (HDDM; Wiecki et al., 2013), the choice and RT data of each
trial (yr) form a distribution described by a Wiener diffusion likelihood function (Navarro and Fuss,
2009), parameterized by {a,v,t,z}. These parameter posteriors can be sampled in a static fashion

using Bayes Monte Carlo, i.e.:

yk~Wiener(a,v,t,z)

[Eq. 2]

A wealth of existing literature has tested hypotheses by additionally fitting the DDM parameters
separately for different task conditions (e.g. Ratcliff and Frank, 2012; Wiecki et al., 2013;
Bottemanne and Dreher, 2019; reviews in O'Connell et al., 2018; Gupta et al., 2022). Under the
above probabilistic framework, parameters {a,v,t,z} can be fitted as a mixture model, to account
for different states (s). In such a case, the model assigns y« to one of two Wiener distributions,

depending on trial k's state of conflict (s), i.e.:

Yi|(sk=s)~Wiener(as,Vs,ts,Zs)

[Eq. 3]

where s€{0,1}, i.e., low or high conflict. Evaluating this mixture extension allows probabilistic
inference that DDM parameters are credibly different depending on the state of conflict. This can

be evaluated using model fits and/or by testing whether the highest density interval (HDI) of the
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group-level posterior for a parameter in low conflict (s=0) minus the posterior for that parameter

in high conflict (s=1) does not subtend 0, i.e., 0  HDI([p(Polyo)] - [p(P1ly1)]), where Pe{a,v,z,t}.

Under the probabilistic framework, parameters {a,v,t,z} can additionally be modeled as a linear

combination of continuous predictors, such as trial-by-trial estimates of a neural (e.g., Frank et

al., 2015) or cardiac-sympathetic signal, i.e.:

yk~Wiener(a,v,t,z), where;
a=boatb1,a*X1 ..., bn.a*Xn
v=boy+b1yv*X1,...; bBry*Xn
t=bo,+b1,*X1,..., bn*Xn
z=bo+b1,*X1,..., bn*Xn

[Eq. 4]

Here, X1,..., Xn are vectors of trial-by-trial physiology signals and bip,..., bnp are their coefficients
(for each P€{a,v,t,z}). Evaluating this regression extension (either using model fits or by testing if
the HDI of group-level posteriors bip,..., bnp do not contain 0) allows probabilistic inference that

DDM parameters are associated with moment-to-moment physiological fluctuations.
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Finally, the models described in Egs. 3 and 4 can be merged into a mixed-regression model, to
allow inference about both state-specific parameter estimates and state-specific associations

between moment-to-moment physiology and parameters, i.e.:

yi|(sk=s)~Wiener(as,Vs,ts,2s), where:

as:bo,a,s + bl,a,s *Xl,s yeeey bn,a,s *Xn,s

Vs=b0,v,s + bl,v,s X1 yeees bn,v,s*Xn,s

tszbo,t,s + bl,t,s ), SR bn,t,s *Kns

Zszbo,z,s + bl,z,s ), S bn,z,s *Xn,s

[Eq. 5]

Here Xis,..., Xns are vectors of trial-by-trial physiology signals in state s. Evaluating this mixture-
regression extension allows the inferences of Egs. 3 and 4. In addition, this model allows
probabilistic inference about whether the association between DDM parameters and physiological

fluctuations depends on the state of conflict.

In our analyses, we used an iterative approach to narrow down the best combination of physiology
variables associated with state-specific parameters of the DDM. We first fitted a "baseline” model.
This was the mixture model described in Eq. 3 and it both served as a baseline comparison for
later physiology models and probed the static parametric differences between high and low
conflict (Figure 2D). We then fitted a series of mixture-regression models using the formula in Eq.
5. These models tested if additionally modeling the state-specific parameters as a linear

18



combination of a state-specific physiology signal would provide a better-fitting model than the

baseline. These "singular" models (Figure 3D) contained a single regressor, i.e.:

Ps=bopstb1ps*X1s for each Pe{a,v,z,t}

[Eqg. 6]

where s€{0,1}, i.e., low or high conflict, and the single regressor (X1s) was one of the neural
variables, or the cardiac-sympathetic variable, described below. We used model fits (Deviance
Inference Criterion (DIC); Wiecki et al., 2013) to determine if these singular models were a better

fit to the data than the baseline model.

We pre-empt some results here to aid describing the next stage of modeling, i.e., that a number
of singular models were superior fits to baseline, including the singular model containing the
cardiac-sympathetic assay. We next fitted a series of "cross-modal" mixture-regression models
(Figure 3E). These models tested whether the best singular model fit could be improved by
extending it to two regressors. In each of these models, one regressor was the cardiac-
sympathetic assay and the other regressor was a neural variable (i.e., cross-modal). We restricted
the addition of neural variables to only those that had featured in singular models that were

superior fits to baseline. A two-regressor "additive" cross-modal model was therefore:

Ps=bopstbips*Xi1stbaps*Xo s fOr each PE{a,V,Z,t}

[Eq. 7]
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Here se€{0,1}, i.e., low or high conflict, the first regressor (X1s) was the cardiac-sympathetic assay
and the second regressor (Xz2s) was a neural variable from singular models outperforming

baseline. An additional three-regressor "interactive" cross-modal model was:

Ps=bopstb1ps*X1sth2ps*X2stbsps*Xss for each Pe{a,v,zt}

[Eq. 8]

Here all parameters were the same as in Eq. 7, except now a third regressor (Xss) contained the
z-score-normalized dot product of X1 s and Xz, i.€., capturing the correlation over trials between
the neural and cardiac variable. In other words, the interactive model additionally allowed
inference about the alignment of neural and cardiac signals being associated with DDM
parameters. We used model fits DIC scores to determine if any additive (Eq. 7) or interactive (Eq.

8) models were a better fit to the data than the best-fitting singular model (Eq. 6).

We pre-empt some additional results here to aid describing the next stage of modeling, i.e., that
a number of cross-modal models were superior fits to the best-fitting singular model. We next
fitted a final series of mixture-regression models (Figure 3F). These "complement” models now
tested whether the best-fitting cross-modal model could be improved by extending it to incorporate
additional neural regressors and regressors of neural-cardiac alignment. The design matrix of
these models started with the regressors from the best-fitting cross-modal model, i.e., a neural
variable, the cardiac-sympathetic variable and, if applicable, the interaction term. We then tested

if the fit could be improved by also including complement (i.e., set difference) regressors from
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other cross-modal models. In other words, we combined cross-modal design matrices, removing
redundant regressors. We tested complement models by merging the best-fitting cross-modal
model with the set difference of the cross-modal models involving all neural variables that passed
the singular model stage (i.e., early attn_rew, late _the, early SS sym, late alpha_sym,
late_alpha_rew), using their best-performing cross-modal forms (i.e., whether or not they included

interactions). Each "complement" model was therefore:

Ps=B*[X'psIX"ps\X'ps] for each P€{a,v,zt}

[Eq. 9]

where s€{0,1}, i.e., low or high conflict, X' is the design matrix of the best-fitting cross-modal
model, X" is the design matrix of an additional cross-modal model (provided it was a superior fit
to the best singular model) and X"\ X' describes the set-difference, i.e., removal of any common
columns between them. B is a coefficient vector of length corresponding to the resulting
concatenated design matrix. We used model fits DIC scores to determine if any complement

models (Eq. 9) were a better fit to the data than the best-fitting cross-modal models (Eqgs. 7-8).

Model to discretize neural-cardiac interactions. We pre-empt some additional results here to aid
describing the next stage of modeling, i.e., that one complement model was a superior fit to the
best-fitting cross-modal model. This model featured an association between the decision
boundary and a dot-product regressor described in the "interactive" model in Eqg. 8 (specifically
contractility-late alphasym). This association was additionally unique to states of high conflict. To

help clarify the underlying dynamics of this seeming three-way interaction, we fitted a model that
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discretized these two continuous regressors (high and low contractility and high and low late
alphasym) within each participant, and fitted a decision boundary separately for the resulting
combination of physiological states, separately again for low and high conflict, creating eight
states in total. This model was the same as the baseline model in Eq. 3 but with a different

parameter mixture for the decision boundary, i.e.:

Vil (sk=s,dk=d)~Wiener(agq,Vs,ts,Zs)

[Eq. 10]

where s€{0,1}, i.e., low or high conflict, and d€{000,001,010,011,100,101,110,111}, where the
digits in each of the eight binary code sequences respectively describe the conflict (low (0) or high
(1)), late alphasym (low (0) or high (1)) and contractility (low (0) or high (1)) states of trial k. The
latter two levels were classified using median splits within participants. In this model, we report

parameter estimates aq as a difference measure (A boundary) from when d=000.

Control models for local and global brain activity. To assess whether cardiac-sympathetics might
be a proxy for more general activity levels in the brain (for example, a global or frequency-specific
increase in gain), we performed two additional control models for our best-fitting complement
model. In each case, we substituted an alternative measure of brain activity for the contractility
regressor and the contractility component of any dot-product (interaction) regressors featuring
contractility. In the first, we substituted contractility with an estimate of global field power (GFP;
Skrandies, 1990), which we computed as the standard deviation across all electrodes in the

montage, with data bandpass-filtered from 1 Hz to 40 Hz. In the second, we substituted
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contractility with a signal more local to the relevant frequency band in our findings (alpha). For
this, we used an estimate of the average alpha power across all electrodes in the montage, with
data preprocessed in the same way as our assays in this frequency band (see below). For a single
trial-by-trial estimate in each case, we averaged both the GFP measure (using the root-mean-
square average) and the global alpha power measure across timepoints in the time window [0 s

to 1 s] post offer onset.

In all HDDM models, we sampled both individual and group-level-parameters in a hierarchical
fashion and report group-level findings. We sampled posteriors 5000 times with Markov-Chain
Monte Carlo, using the HDDMRegressor function from the HDDM toolbox (Wiecki et al., 2013)
version 0.6.0 in Python 2.7, using default settings for hyper-parameters. We discarded the first
500 samples of each posterior estimate as tuning steps. A single drift rate was fitted using a link

function that made it negative on avoid trials and positive on approach trials.

Alternative model assessment. For the baseline model, and for the best-fitting singular, cross-
modal, and complement models, we additionally report a proxy of RT variance explained by each
model using a bin-by-bin regression procedure. This procedure first simulated trial-by-trial RTs
using posterior medians of parameters of the models (linearly estimated where relevant using
model coefficients and trial-by-trial regressors) with a Wiener-like process. For approach trials,
the simulated decision process (x) initiated at time (RT=0) at a starting point in units of the
boundary, i.e., x(RT=0)=z-a. As RT increased in units of 0.01, x increased with x=x+0.01v until
the boundary was reached, i.e., x>a. For avoid trials, the process was the same except with v
inverted and the process continuing until x<0. Finally, nondecision time (t) was added to the

resulting RT to arrive at the final simulated value. We next binned observed RTs and correlated
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bin-by-bin medians with medians derived from corresponding simulated RTs. We report variance
explained from Pearson correlations (R?) for this procedure separately using 10, 15, 20, 25, 30,

35, and 40 bins of RT in the correlation.

EEG neural recordings - Recording, preprocessing and assays

Recording. Concurrent with the approach-avoidance paradigm, we recorded continuous
electroencephalogram (EEG) data from a montage of 63 scalp electrodes (channels) arranged
using the International 10-20 system. We sampled the EEG signal at 2000 Hz from each channel,
using a BrainAmp MR amplifier (Brain Products, Berlin, Germany). Channel FCz served as the
online reference while channel Cz served as the ground. Between blocks, experimenters paused

recordings to check electrode impedance (<5 kQ) and noisy channels.

EEG preprocessing used functions available in the EEGLAB toolbox (Delorme and Makeig, 2004).
First, each participant's EEG data were downsampled (250 Hz) and hi-pass filtered (<1 Hz)
separately for each block. Line noise was removed with an automated function (Mullen, 2012).
We merged resulting sets of blockwise data into a single set (one set per subject) and identified
noisy channels using an automated function that tested whether data in each channel correlated
with those in surrounding channels by a coefficient of at least 0.85 (Kothe and Makeig, 2013).
Identified channels were replaced using spherical interpolation. We then re-referenced datasets
to the montage average, created epochs spanning from -1 s to +6 s relative to offer onset, and
subtracted baseline means (taken from the window -.5 s to O s relative to offer onset). We then
performed ICA decomposition separately on each subject’s resulting epochs, and stored the
resulting weights of components that were 95% likely to be ocular or cardiac activity, determined

by an automated classifier (Pion-Tonachini et al., 2019). We next imported, downsampled, hi-
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pass-filtered and removed line noise from participants' separate blocks of raw data again, as
above. Separately for each block, we replaced noisy channels as above and removed ICA
components related to ocular and cardiac artefacts. We marked any data point where any channel
still exceeded 150 mV (for later rejection) and applied a spatial Laplacian filter across multichannel
data at each time point. We then reversed the laterality of electrodes on all trials where reward
appeared on the left of the screen, so that each trial "de facto" presented reward on the right and

cost on the left. We refer to data at this stage as "preprocessed" data.

Assay of sensory gain. To extract timeseries from preprocessed data for steady-state visually
evoked potentials relevant for reward (SSrew) and cost (SSshi) information (Figure 3A), we used
rectified and smoothed power timeseries that had been filtered to either 12 or 13.33 Hz, depending
on the flicker of reward or cost information for a given trial (note that no specific frequency mapped
onto either reward or cost; flickers varied trial-by-trial). We convolved each channel’s fast-Fourier-
transformed data with trapezoid-shaped bandpass filters ("on" width = .5 Hz, transition bandwidth
= 0.25 Hz), centered on 12 Hz or 13.33 Hz before rectifying, smoothing (mean within sliding
windows spanning 66 ms) and downsampling inverse-Fourier timeseries to 125 Hz. We also
constructed a third dataset, using these exact procedures, but with filters centered on 12.66 Hz
(midway between 12 and 13.33 Hz), and subtracted it from SSrw and cost SSshk timeseries to
mitigate SS influence from underlying activity in the alpha band. We created epochs spanning
from -1 s to +6 s relative to offer onset for the 12 and 13.33 Hz datasets, removing the baseline
average value in the 500 ms window prior to offer onset. For trial-by-trial measures, we computed
the average power in early ([O s to 1 s] post offer onset) and late ([1 s to 2 s]) time windows (Figure
3A). Amplitudes were averaged at electrode sites contralateral to the relevant information, i.e.,
01 and PO1, or at electrodes O2 and PO2, depending on reward and cost laterality on a given

trial (Figure 3A).
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Assay of goal-directed attention. We also extracted timeseries from preprocessed data of spatially
sensitive alpha power, i.e., relevant for reward (alpharw) and cost (alphasnh) information (Figure
3B). We first applied notch filters to remove power in SS frequencies (inverse of bandpass filters
above), and then convolved each channel’s fast-Fourier-transformed data with a trapezoid-
shaped bandpass filter ("on" segment spanning 7 Hz to 14 Hz, transition bandwidth = 0.5 Hz).
Resulting inverse-Fourier timeseries were rectified, smoothed (mean within sliding windows
spanning 66 ms) and we downsampled channels to 125 Hz. We created epochs spanning from -
1 sto +6 s relative to offer onset, removing the baseline average value in the 500 ms window prior
to offer onset. For trial-by-trial measures, we computed the average power in early ([0 s to 1 ]
post offer onset) and late ([1 s to 2 s]) time windows (Figure 3B). Amplitudes were averaged at
electrode sites contralateral to the relevant information, i.e., PO and PO7, or at electrodes PO2

and PO8, depending on reward and cost laterality on a given trial (Figure 3B).

Symmetry timeseries. In our approach-avoidance paradigm, conflict peaks when an offer's value
makes approaching it as appealing as avoiding it, measured as the absolute distance from a
decision boundary (SV=0 or p(approach)=0.50; Figure 1). For both the SS and alpha timeseries
we also computed a neural proxy of conflict to include in our models, by way of a “symmetry”
timeseries, at each timepoint (t); i.e, SS()sym=-1*10g(|SS(t)rew-SS(t)rew]); alpha(t)sym=-
1*log|alpha(t)ew-alpha(t)sn|). Given the inversion, higher values reflect higher symmetry, or in
other words, that more equal power was present in the traces relevant for reward and cost (Figure
3A-B). For trial-by-trial measures, we computed averages in the same manner (early and late
windows) as the single traces. To verify that these symmetry metrics tracked conflict, we

performed repeated-measures ANOVAs testing whether each participant's symmetry trace was
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modulated by the state of conflict (low or high), the phase of trials (early vs late), or their

interaction.

Assays of cognitive control and decision making. The assays of neural activity described above
exploit the modifications (graded onset, frequency-tagged, spatially mapped stimuli) we made to
the approach-avoidance paradigm and allow comparison and contrast between early and late
perceptual processes during decision making. However, to perform a more complete analysis of
neural-cardiac-behavioral relationships, we additionally extracted neural signals traditionally
associated with other components that are likely relevant during the approach-avoidance conflict.
The first was delta power over posterior parietal sites (Figure 3C). Activity in this frequency range
has been linked with DDM-like mechanisms of decision making in perceptual contexts (O'Connell
et al., 2012; Harper et al., 2014). For trial-by-trial measures, we computed the average power
between (1 and 4 Hz) in early (JO s to 1 s] post offer onset) and late ([1 s to 2 s]) time windows at
electrode sites (CPz and Cz). The other signal we extracted was frontal-midline theta (Figure 3C),
classically considered an assay of cognitive control and action regulation (Luu et al., 2004;
McLoughlin et al., 2014). For trial-by-trial measures, we computed the average power between (4
and 7 Hz) in early ([0 s to 1 s] post offer onset) and late ([1 s to 2 s]) time windows at electrode

sites (Fz, F1 and F2).

Alpha-phase coherence. In a final neural-cardiac analysis (as a follow-up on later-reported
results), we probed how the state of cardiac-sympathetics (specifically, whether contractility was
high or low) was related to the coherence of alpha power across trials, relevant to both the reward
and cost information. We re-processed the alpha-band activity contralateral to the reward and

cost information, extracting the phase angle of these waveforms over time, i.e., alpha..0 and
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alphasn®. If specific events (such as the onset of an offer) evoked temporally consistent
fluctuations in alpha power, phase angles would summarize across trials to a coherent sinusoid-
like waveform oscillating in and around the alpha-band frequency (7—14 Hz). We averaged across
trials for each participant's alphas..0 and alphasn0 timeseries, separately for trials in states of high
and low conflict and separately again for trials in states of high and low contractility (determined
by a median split across all of a participant's trials). To compute a summary estimate of early and
late coherence across trials, we rectified the resulting participant-average phase waveforms |8|,
and computed the average values across datapoints in early ([O s to 1 s] post offer onset) and

late ([1 s to 2 s]) time windows (Figure 5A).

Cardiac-sympathetic recordings - Recording, preprocessing and contractility assay

Recording. Concurrent with the approach-avoidance paradigm we also recorded data from
combined electrocardiogram (EKG) and impedance cardiogram (ICG) using a total of ten EL500
electrodes (BIOPAC, USA). Prior to recording, in a private room, a trained female researcher
disinfected the skin at the electrode sites. They gently exfoliated the skin with an abrasive pad
(ELPAD, BIOPAC, Inc.), applied NuPrep skin exfoliating gel (ELPREP, BIOPAC, Inc.) to each
electrode site (~1-by-1 inch area of skin) and fanned the sites dry. EKG was recorded from one
electrode beneath the right collarbone and one beneath the left rib cage. ICG was recorded from
eight electrodes: two on each side of the torso and two on each side of the neck. ICG electrodes
served as the ground for EKG. All electrodes had a small dab of electrode gel (GEL100, BIOPAC,
Inc.). The upper neck and lower torso (outside) electrodes injected a 4mA alternating current into
the thoracic cavity at 50 kHz, while the lower neck and upper torso (inner) electrodes were
voltage-sensing. We sampled both the EKG and ICG signals at 5000 Hz via carbon fiber leads

connected respectively to ECG100C and NICO100C amplifiers, integrated with an MP150 system
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(BIOPAC, Inc.). Online, AcgKnowledge software version 4.3 differentiated the raw basal
transthoracic impedance (z) ICG data with respect to time (dz/dt) and removed respiratory artifact
from the ensuing dz/dt waveform with a high-pass filter (BIOPAC, Inc.). Once seated in the testing
suite, we instructed participants to minimize unnecessary movement and vocal sounds to limit
disruptions to the physiology signal. Participants completed a nonrecorded resting period to
acclimate to the study environment. Between blocks, experimenters paused recordings to check

for noise in the EKG and ICG data.

EKG/ICG preprocessing and contractility assay. We estimated contractility from the pre-ejection
period (PEP). We used a semi-automated software package (MEAP; Cieslak et al., 2018), which
uses moving ensemble averages (15-second windows) to help identify the R point of the EKG
QRS complex (early systole: initial left-ventricular depolarization) and the B point of the dz/dt
waveform from the ICG (mid systole: opening of the aortic valve), for each individual heartbeat
(Figure 3D); all heartbeats were manually checked for correct point classification. The time period
between these two cardiac events is the pre-ejection period (PEP). This electro-mechanical time
interval, covering systolic activity from the initial electrical depolarization of the left ventricle until
the opening of the aortic valve, is an index of beta-adrenergic contraction vigor, and is primarily
mediated by sympathetic activity (Lewis et al., 1974; Light, 1985; Linden, 1985; Newlin and
Levenson, 1979; Sherwood et al., 1986; 1990). Shorter intervals reflect increased contractility
(positive inotropy). For trial-by-trial measures, we computed the average PEP value across all
heartbeats occurring in the two-second window immediately following offer onset (Figure 3D).
These values were log-transformed and then reverse-scored, so that higher values reflect higher

contractility.
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Results

We recorded continuous multi-channel electroencephalography and cardiac-sympathetic
physiology while 27 human participants performed an approach-avoidance task, trading off
monetary reward for electric shock cost (see trial schematic in Figure 2A). On average,
participants accepted 68% (0=12.6%) of offers, and responded with median RT of 1.73 seconds

(0=0.428) relative to offer onset.

Behavioral results

Logistic choice models. From two-dimensional logistic models fitted separately to each individual
subject’s set of choices, modeling p(approach) as a function of an intercept (bo) and the magnitude
of monetary reward (b1) and shock cost (b2) offered on each trial, these two continuous value
dimensions respectively increased (group-mean b;=6.05; t(26)=9.55; p<0.001, Figure 2B) and
decreased (group-mean b,=-4.76; t(26)=-7.65; p<0.001, Figure 2B) the log odds of approach. In
other words, participants integrated both reward and a cost into their choices. However these
parameters also confirmed that participants were reward sensitive, characterized by a bias toward
approach (group-mean bo=4.15; t(26)=6.08; p<0.001, Figure 2B), and an overweighting of reward
in the integration of value dimensions (group-mean |b1|-|b2|=0.987; t(26)=3.59; p<0.001, Figure
2B), consistent with previous studies (Shapiro and Grafton, 2020; Dundon et al., 2021; Pedersen

et al., 2021).

[Figure 2 here]
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From these logistic models we classified each trial as offering either high or low conflict (see
methods). We confirmed that these classifications gave rise to the typical behavioral features of
encountering conflict: less consistent choice and lengthier RT. First, we observed in a
nonparametric estimate of choice consistency across participants, that there was a higher level
of deviation in choices (i.e., different choices registered at different times for similar offers,
enumerated with a bin-by-bin variance estimate (V); see methods) in trials identified as high
conflict (Vchoice,nigh=0.071) compared to trials identified as low conflict (Vchoice,nigh =0; 1(26)=13.23,
p<0.001; Figure 2C). Next, we observed across participants in a comparison of median RT, that
responses were longer on trials identified as high conflict (RThgh=2.02 s) compared to trials

identified as low conflict (RTiew=1.66 s; t(26)=12.10, p<0.001; Figure 2C).

Baseline computational model. We next fitted a baseline hierarchical Bayesian drift-diffusion
model (HDDM; Wiecki et al., 2013), to get a clearer insight into how increased conflict alters the
computational parameters associated with choice and RT. This model (described in Eq. 6) fitted
distinct group-level DDM parameters {a,v,z,t}, depending on whether participants were making
choices on trials in states of low or high conflict. This baseline model revealed that in high conflict,
participants displayed a wider decision boundary (a), consistent with seeking more evidence
before executing their choices (Figure 2D; Table 2-1). The model also revealed that participants
reached this decision boundary by way of a dampened rate of evidence accumulation ((v); Figure
2D; Table 2-1). Starting points (z) in this DDM also suggested an overall bias toward approach in
states of both low and high conflict, however this bias was attenuated in high conflict (Figure 2D;
Table 2-1). Finally, nondecision time (t) was slightly shorter in high conflict (Figure 2D; Table 2-

1).

31



Summarizing the behavioral and baseline computational results so far, participants were reward
sensitive, but also confronted states of subjective "conflict". The parametric-behavioral response
to states of high conflict appeared to involve a larger requirement of evidence prior to committing
choices, a slower accumulation of evidence toward that criterion and an attenuated bias toward

approach behavior.

Verifying neural symmetry’s association with conflict. Two within-subjects ANOVAs verified that
the SSsym (F(1,26)=8.29, p=0.008) and alphasym (F(1,26)=5.82, p=0.023) “symmetry” traces varied
with conflict. For alpha, there was also an interaction with trial phase (F(1,26)=11.9, p=0.002): no
significant difference between conflict states early (mean difference=-0.008; SE=0.012;
Prukey=0.906), but higher symmetry in high conflict late (mean difference=-0.043; SE=0.012,

pTukey=0.004) .

Cross-modal (neural and cardiac-sympathetic) collaborative association with (DDM) parameters

We next tested if DDM parameters were associated with trial-by-trial physiological fluctuations,
and if this association was unique to a specific state (i.e., low vs high conflict). Specifically, we
used an iterative modeling approach to find a best-fitting combination of physiological signals
associated with DDM parameters, with an emphasis on discovering cross-modal (i.e., neural and
cardiac) collaboration. We began this process with a total 17 candidate physiology signals. Neural
signals were: steady-state visually evoked potentials relevant for reward (SSrew) and cost (SSshk)

information, in addition to the "symmetry" trace (SSsym) enumerating the similarity between these
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traces (i.e., the symmetry across the brain) over time (Figure 3A); spatially sensitive alpha power,
i.e., relevant for reward (alpharew) and cost (alphasnk) information, in addition to a "symmetry" trace
(alphasym) enumerating their similarity over time (Figure 3B); frontal-midline theta power (theta)
and posterior-parietal delta (delta) power (Figure 3C). For each neural variable, we computed
average power in early ([0 s to 1 s] post offer onset) and late ([1 s to 2 s]) time windows, making
a total of 16 neural variables for each trial (Figure 3A—C). The 17th physiology signal was an
estimate of cardiac contractility (inotropy; Figure 3D). We averaged across a positively scored
contractility estimate for each heartbeat registered in the two-second window post offer onset

(Figure 3D).

Singular models. For the iterative modeling approach we first fitted a series of "singular* models
(Eq. 6) that probed whether modeling DDM parameters {a,v,z,t} as a linear combination of a single
regressor (i.e., one trial-by-trial physiology signal) would provide a better-fitting model than the
baseline model described above. Using Deviance Information Criterion scores (DIC; Wiecki et al.,
2013) we observed that seven models provided an improved fit (Figure 3E); these models
respectively modeled the DDM parameters as a function of trial-by-trial fluctuations in late alphasym
(-ADIC=141.3), late alphasnk (-ADIC=129. 8), late alphaew (-ADIC=116.45), contractility (-
ADIC=39.6), early SSsym (-ADIC=8.21), late theta (-ADIC=5.54) and early alpharew (-ADIC=2.31).
A proxy for RT variance explained for the best fitting singular model is in Figure 3H. We therefore
established first that behavioral decompaositions from the DDM were associated with both neural
and cardiac-sympathetic physiological signals that varied on a trial-by-trial basis, with neural

signals predominantly involving the alpha band, and signals measured in the later time window.

[Figure 3 here]
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Cross-modal models. Singular models revealed associations between DDM parameters and both
neural and cardiac-sympathetic signals. We next fitted a series of "cross-modal" models (Egs. 7—
8). These models tested if the singular models containing a neural regressor could be improved
by adding contractility as a second regressor (i.e., cross-modal). We restricted cross-modal
models to include neural variables from the singular models that were superior fits to baseline.
We also tested for evidence of both additive and interactive cross-modal collaboration. For
additive collaboration, we tested models with two regressors (the neural variable in question, and
contractility), while for interactive collaboration, we added a third interaction or "alignment”
regressor which was the normalized product of the neural variable in question and contractility.
This made 12 target cross-modal models in total (Figure 3F). We also updated the baseline, and
tested if these cross-modal models improved the fit relative to the best-fitting singular model, i.e.,
which had alphasym as its sole regressor (dashed line from Figure 3E to 3F). From resulting
differences in DIC scores, we observed six cross-modal models providing an improved fit over
baseline. All such models involved alpha-band activity recorded in the late window (Figure 3F).
The best-fitting model (-ADIC=29.0) was additive; it contained alphasn, that is, alpha power
relevant for the cost information, alongside contractility, and no third alignment regressor. A proxy

for RT variance explained for the best fitting cross-modal model is in Figure 3H

Complement models. Our cross-modal models revealed that behavioral features could be
modeled by a neural variable relative to cost (alphasn) in addition to cardiac-sympathetic
fluctuations (contractility), i.e., side-by-side in the same model. However, given that cross-modal
models involving alpha power relevant to reward information (alpharew) and the symmetry of alpha

across the brain (alphasym) also provided improved fits (Figure 3F), we ran a final set of
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"complement" models to test for their complementary association with DDM parameters (Eq. 9).
In other words, we tested if the outright best cross-modal fit (additive alphasw, marked "m1" in
Figure 3E) could be improved even further by also including complement (i.e., set difference)
parameters from either of the two best-fitting cross-modal models involving alpharew and alphasym
(each of which was interactive; each marked "m2" in Figure 3F). We again updated the baseline
to the best-fitting cross-modal model (dashed line from Figure 3F to 3G). From resulting
differences in DIC scores (Figure 3G), we observed both complement models to improve the fit,
with substantial improvement in the case of adding set difference parameters involving the
interactive cross-modal model with alphasym. (-ADIC=155.3). In other words, the best-fitting
complement model modeled DDM parameters not just by alphasw and contractility, but also by
the symmetry of alpha across the brain (alphasym) and the product of alphasym and contractility. A
proxy for RT variance explained for the best fitting complement model is in Figure 3H. Our iterative
modeling approach therefore unearthed a set of both neural (exclusively alpha) and cardiac-
sympathetic physiological signals associated with parameters of the DDM, and further revealed
evidence for interactive cross-modal collaboration (i.e., neural and cardiac-sympathetic

alignment).

Inspecting the parameter posteriors of this best-fitting complement model (Figure 4A-D), the
majority of associations were with the decision boundary (a). Wider boundaries were
accompanied by a fairer spread of attention to all dimensions of available information, though this
was not exclusive to states of high conflict. In both low and high-conflict states, there was a
negative association between the boundary and alpha relevant to cost (alphash; Figure 4A; Table
4-1), suggesting greater desynchronization of alpha contralateral to cost information associated
with increased boundaries (consistent with more attention being allocated to that information ).

Also in both conflict states, there were positive associations between the boundary and the
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symmetry of alpha on either side of the brain (alphasym; Figure 4A; Table 4-1). Widening
boundaries were therefore not solely associated with deploying attention to cost, but also a more
even spread of attention to both channels of information, consistent with a pursuit of greater
evidence, but in an additive, i.e., not overriding manner. The relationship between the boundary
and cardiac contractility was likewise observed in both states. This (positive) association was
consistent with wider boundaries also accompanying increased sympathetic drive (contractility;
Figure 4A; Table 4-1). Exclusive to states of high conflict, we identified the interactive aspect of
cross-modal collaboration, i.e., neural and cardiac-sympathetic signals aligning with meaningful
measures of behavior. That is, in addition to its linear relations with alphasym and contractility, the
boundary (as determined through the DDM) was additionally positively associated with their
alignment. Strikingly, this association only occurred in states of high conflict (alphasym*cont.;
Figure 4A; Table 4-1). In other words, as participants made choices in high conflict, which was
linked with wider decision boundaries, part of this boundary widening was directly related to
alignment between a cardiac-sympathetic (positive inotropic) response and the degree of alpha
symmetry across the brain. This was the sole evidence of such interactive cross-modal

collaboration in our best-fitting model.

[Figure 4 here]

We observed more sparse associations between physiological signals and the remaining DDM
parameters. Drift rate (v) was not credibly associated with any signal (Figure 4B; Table 4-1). The
starting point (z) was related to alpha related to cost, only in states of high conflict (alphasn; Figure
4C; Table 4-1). This positive association is consistent with a bias toward approach intensifying

when less attention is directed at the cost information (i.e., more synchronization of alphasn).
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Finally, state-specific associations emerged relating to nondecision time (t). Nondecision time is
a constant term included in the DDM to account for early perceptual and motor preparation
processes. In low conflict, nondecision time was longer when alpha symmetry decreased, and
when alpha relevant to cost increased synchrony (alphasw and alphasym; Figure 4D; Table 4-1).
Conversely, in high conflict, nondecision time was longer solely when alphasym increased (Figure

4D; Table 4-1).

To help clarify the underlying dynamics of the seeming three-way interaction and the decision
boundary (i.e., associations between the decision boundary and combinations of conflict, alphasym
and contractility) we fitted a modified version of the baseline model in Eq. 3. This model discretized
trials into eight bins depending on whether these three measures were high or low, and fitted a
separate decision boundary for each. Figure 4E and Table 4-2 respectively depict and
characterize the resulting parameter posteriors, expressed relative to a baseline (low conflict, low
late alphasym and low contractility). We here see that the decision boundary is credibly widest
when both contractility and the symmetry of alpha across the brain is high. This is consistent with
the interaction in Figure 4A being driven by the two signals synchronously increasing (i.e., higher

contractility alongside higher alpha symmetry) during moments of conflict.

We additionally fitted control models to assess whether cardiac-sympathetics might be a proxy
for more general activity levels in the brain, i.e., a global or frequency-specific increase in gain
(Figure 4F). In these models, we used the best-fitting complement model, substituting contractility
regressors (and interaction regressors featuring contractility) with an estimate of global field power
(GFP; Figure 4F) and total alpha power in the brain (whole brain alpha; Figure 4F). Only the model

substituting contractility with global field power (GFP) was a slightly better fit (-ADIC=5.78).
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However, inspecting parameters posteriors for the decision boundary in this control model
alongside the contractility complement model (right panels of Figure 4F; Table 4-2) we observed
a striking dissociation between the direction of associations. While the boundary is widest for high
levels of contractility and alphasym, alignment of GFP and late alphasym was instead associated
with smaller boundaries (parameters marked with arrows in figure 4F). This strengthens the case
that contractility might be part of a physiological response to scrutinize evidence in a conflicting
situation, in contrast to other brain signals that might instead be associated with an urgency to

respond more quickly.

Inter-trial alpha-phase coherence. In the above section we observed that alpha dynamics and
their alignment with cardiac-sympathetic signals were associated with behavioral parameters
during the approach-avoidance conflict. That is, during high-conflict choices, the width of the
decision boundary was positively associated with the alignment between contractility and alpha
symmetry. We lastly sought additional evidence (outside of computational models) regarding the
nature and characteristics of the relationship between contractility and alpha dynamics. For this,
we probed how the state of cardiac-sympathetics (specifically, whether contractility was high or
low) was associated with coherence of alpha power across trials, separately for alpha power
relevant to both the reward and cost information, and separately again for high and low-conflict
trials. We extracted the phase angle of these waveforms over time, i.e., alpha.+0 and alphasn0.
Figure 4G depicts alpha.w8 and alphaswO summarized across trials and participants, separately
for trials that were above (high contractility) or below (low contractility) a participant's median.
Note that the waveforms in Figure 4 only show trials in states of high conflict. Here we observe
alpha-like oscillations present in each time series, indicating coherence across trials. However,
during the later time window, the sinusoidal patterning in alphar.ew8 (Figure 4G top panel) appears

to be greater on low-contractility trials. A three-way within-subjects ANOVA of summarized
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rectified phase angles |8] as a function of the timeseries (alpharw8, alphasn0), time window (early,
late) and contractility (high, low) confirmed by way of a three-way interaction (F(1,26)=5.84,
p=0.023) that coherence was indeed higher in low contractility (|6|=0.117) vs high contractility
(18]=0.091; prukey=0.012), only in the alpha.w0 timeseries and only in the late time window (Figure
4H). In addition, the same three-way ANOVA returned no three-way interaction for trials in states
of low conflict (F(1,26)=0.5033, p=0.484). Thus, this additional analysis using both raw data and
an alternative means to look at frequency decomposition (coherence vs power) first supports the
idea that the relationship between contractility and alpha dynamics is relevant primarily in states
of high conflict. In addition, the reduced coherence across trials in alpha power relevant for reward
when contractility was high, uniquely observed for high-conflict trials, additionally reveals a
potential mechanistic role of for the sympathetic response during conflict. That is, fair assessment
of all available information during a high-conflict decision might require disrupting a dominant

reward-related signal, and sympathetic systems might contribute to this disruption.

Discussion

Event-related physiological sciences have laid the foundations to explore cross-modal (i.e., neural
and cardiac-sympathetic) collaboration subserving complex value-based behavior. We recorded
parallel continuous electroencephalographic and cardiac-sympathetic data to probe associations
between cognitive-neural and cardiac-sympathetic responses (contractility) while humans
performed a modified version of the approach-avoidance paradigm. Our findings suggest
participants were reward sensitive but encountered "conflict" when approach and avoidance

presented similar value. Using the drift-diffusion model (DDM), we computationally decomposed
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their behavior during conflict, which principally involved a widened decision boundary, consistent
with pursuit of more evidence prior to choices. Our best-fitting model of DDM dynamics suggested
that regardless of the state (low or high conflict), the boundary increased alongside increased
goal-directed attention to both costs and rewards, as well as alongside increased cardiac
contractility. However, exclusively in states of high conflict, the alignment of neural and cardiac-
sympathetic was associated with additional increase of the boundary width. This association was
markedly different from those involving alternative proxy measures of neural gain. Together, these
findings offer the first evidence of a potential interactive cross-modal collaboration of neural and
cardiac-sympathetic systems during evidence scrutiny in conflicting value-based decisions.
Analyses involving cross-trial coherence additionally proposed a putative role for sympathetics,

i.e., disrupting the dominance of reward signals.

Our findings suggest that cardiac-sympathetic activity is closely linked with neural processes and
specific behavioral parameters during approach-avoidance conflict, indicating that these
peripheral responses may be recruited by cognitive processes. Beginning with cardiac-
sympathetics, the contractility-boundary relations are broadly consistent with sympathetic
reactivity in contexts of increasing uncertainty (Palacios-Filardo and Mellor, 2019) and greater
difficulty (Richter et al., 2008). However, our cross-trial coherence findings are the strongest
evidence yet that the drivers of sympathetic reactivity might influence dominant reward-signal
processing during value-based conflict. Under a value-based framework, such a role would not
necessarily conflict with other previous findings associating cardiac indices with the pursuit of
reward (Richter et al., 2016). That is, a uniform behavioral policy (i.e., approaching all or avoiding
all) for offers presenting high conflict will result in long-term net-negative yields (either from
mounting incremental costs incurred or mounting incremental opportunity reward costs

eschewed). Optimal behavior should instead try as best as possible to map an efficiently
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enumerated net value (i.e., positive or negative subjective value) onto the appropriate action.
Across decision-making contexts, humans are usually biased toward more desirable information
(Sharot and Garrett, 2016), to the extent that an insensitivity to reward has been reported as a
robust computational phenotype of psychiatric conditions such as depression (Garrett et al., 2014;
Pedersen et al., 2021). In the present study, and in at least two separately reported human studies
using the same task settings (Volz et al.,, 2017; Shapiro and Grafton 2020), participants
consistently overweighted reward when making choices. More recent evidence using transiently
disruptive cortical stimulation further proposes that reward sensitivity might not simply reflect
impulsivity, but a cortically-mediated model of a person's primary goal in a value-based setting
(i.e., capture reward; Rolle et al., 2022). Integrating these findings with our findings under the
above value-based framework, it might therefore be physiologically efficient to prioritize reward
information, and reserve effortful scrutiny and juxtaposition involving multiple streams of
information for moments of conflict. Reward sensitivity also generalizes to dynamic learning tasks,
where recent studies report that people learn faster from positive-vs-negative prediction errors
(Lefebvre et al., 2017; Garrett and Daw, 2020; Dundon et al., 2020). Consistent with our present
findings, this learning asymmetry attenuates (i.e., learning from negative outcomes occurs more
rapidly) when sympathetic activity is elevated (Garrett et al., 2018; Dundon et al., 2020), to the
extent that sympathetic reactivity even predicts individual participants who adjust their behavior
more optimally to declining changes in their environment (Dundon et al., 2020). Whether the
neural sources for cardiac-sympathetics serve common mechanisms to resolve uncertainty and

address biases across decisions and learning is an exciting avenue of future research.

We additionally observed a collaborative association involving neural dynamics in the alpha band.
Broadly considered to reflect inhibition (Jensen and Mazaheri, 2010) and visual spatial attention

(Worden et al., 2000), alpha power also shows a correspondingly flexible and goal-directed profile
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in cognitive processing. For example, during spatial recall, alpha power can code spatial targets
in the absence of external information (MacLean et al, 2019) consistent with post-perceptual goal
maintenance. If participants are cued to switch recall to a different memory location after memory
arrays disappear, alpha dynamics can likewise switch from encoding the initial target to encoding
the new one (van Moorselaar et al., 2018). Alpha power can additionally signal a person's
willingness to take future risks (Zhang et al., 2018), suggesting it also responds in more value-
based settings. Together, these findings are consistent with our interpretation that late alpha
power mediated "fair assessment", i.e., a shift in attention to process additional (cost) information
alongside the reward signal information. Interestingly, we observed less association between
steady-state visually-evoked potentials (SS) and DDM parameters. This might be due to task
requirements. Earlier work implicates SS in coding information relevant for DDM decision
boundaries (O'Connell et al, 2012), albeit in tasks requiring perceptual and not value-based
decisions. Our task used large visually unambiguous stimuli and created conflict that was value-
based (subjective) rather than perceptually driven. Recent human (Zhigalov and Jensen, 2020)
and nonhuman (Bastos et al., 2020) work dissociates alpha signals from modulating gain of
sensory information, consistent with the idea that these signals have greater relevance for
behavioral responses in value-based settings. Our paradigm modifications might also explain the
associations we observed principally involving visual attention (alpha) signals over those
associated with cognitive control (theta) and decision making (delta). Given the varied possible
sites of cortical control for the sympathetics (Dum et al., 2019), future work should not disregard
any potential association between these latter signals and sympathetics, and perhaps modify the

approach-avoidance paradigm to exploit them more selectively.

We lastly speculate on a network of substrates that might underly behaviorally relevant interaction

between the neural (alpha) and cardiac-sympathetic (contractility) signals in states of high conflict.
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It is highly likely that our observed neural dynamics in the alpha band were facilitated by
noradrenergic (NE) projections from the locus coeruleus in the brainstem (LC; Rajkowski, 1993;
Aston-Jones and Cohen, 2005; Joshi and Gold, 2020). The LC-NE system innervates cortical
areas involved in orienting attention (e.g., parietal; Foote and Morrison, 1987), responding to
arousal (Sara and Bouret, 2012), goal-relevant stimuli, and exploration (Aston-Jones and Cohen,
2005), all of which are likely relevant during moments of conflict. LC-NE can also broadly influence
sympathetic activity (Samuels and Szabadi, 2008b). However, when it comes specifically to
cardiac activity, evidence from both animal-optogenetic (Wang et al., 2014) and human-imaging
(Wood et al., 2017) studies suggest LC-NE influences heart rate via vagal (i.e., parasympathetic)
channels, contrasting with our specific cardiac assay—contractility (inotropy)—which primarily
tracks beta-adrenergic sympathetic drive to the heart (see discussion in Stump et al., 2023; also
see methods for how, in our study, we corrected for influences of heart rate and respiratory cycle).
A key subcortical controller of this cardiac-sympathetic response is the rostral ventrolateral
medulla in the brainstem (RVLM; Mandal et al., 1990; Shapoval et al., 1991; Kulkarni et al., 2023),
which is the primary source of organ-specific sympathetic preganglionic neurons. RVLM
principally receives inputs from the cortically modulated hypothalamus (Dum et al., 2019; Kono et
al., 2020; Koba et al., 2022). LC has few direct efferent connections with RVLM, although it might
communicate indirectly via its projections to the paraventricular nucleus of the hypothalamus. The
behavioral changes we observed when neural (alpha) and cardiac-sympathetic (contractility)
signals interact may therefore reflect two subcortical nodes (LC-NE and RVLM) activating
concurrently. Alternatively, alpha-contractility associated collaboration may ultimately be

mediated by interactions at the cortical level.

It is important to note that while our current data offer an important step toward resolving whether

complex cognition actively recruits peripheral responses, our findings are correlational, and
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should not be taken as evidence of direct mechanistic causality. Future studies incorporating
selective modulation of peripheral responses, such as cardiac-specific pharmacological
interventions, could further probe the causality and directionality of these interactions. Future
studies should also aim to clarify the role of peripheral responses alongside brain functions not
examined here, particularly subcortical activity and alternative measures of gain. In addition, while
the DDM provides an elegant and intuitive decomposition of decision behavior, it remains a
hypothesis of underlying mechanistic function and can potentially carry the risk of over-
parameterization (Ratcliff et al., 2016). A more direct paradigm will be needed to replicate and

validate our mechanistic interpretations.

Concluding remarks

We reveal that fair assessment of all available information (i.e., not just rewards) during a high-
conflict decision potentially requires orchestration of both cognitive mechanisms and sympathetic
activity. In terms of clinical relevance, autonomic function is vulnerable to neurodegenerative
conditions such as Alzheimer's and Parkinson's disease (Samuels and Szabadi, 2008b;
Engelender and Isacson, 2017). Future research may therefore test if features of cross-modal

collaboration during complex cognition can assist with early detection.
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Figure 1 Approach-avoidance and drift-diffusion model frameworks

(A) In the approach-avoidance paradigm participants integrate a reward and a cost in a "take-
both-or-leave-both" choice regarding a compound offer. Varying the levels of reward and cost

over multiple offers affords a two-dimensional logistic framework that can identify subjective value
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(p(approach); red-green gradient) and "conflict" (aqua-fuchsia gradient) across the decision
space. Conflict is maximal near a "threshold" (dashed line), i.e., as p(approach) nears 0.50. Four

example offers are shown (a—d) that vary in subjective value and conflict.

(B) High conflict (fuchsia) typically makes choices less consistent with lengthier RT.

(C) The slope of the "threshold" characterizes a sensitivity for reward or cost. Fitting the logistic
model separately for each participant accounts for such sensitivities prior to enumerating where

in decision space they subjectively experience conflict.

(D) The drift-diffusion model assumes choice and RT data can be modeled as a sequential
sampling process; following an initial nondecision time (t), the decision process begins at starting
point (z) and accumulates evidence at rate (v) toward one of two boundaries that determines the
choice (in our case, approach (+) or avoid (-)); boundaries are separated by a distance (a).
Parameters provide a fine-grained assay of behavior, such as any bias toward one choice (z2),
how rapidly evidence is integrated during decision formation (v) or the amount of evidence
required before a choice is executed (a wider boundary denoting a more conservative criterion).
States of high conflict might impact any or all of these parameters. We depict simulated
schematics (n=1000 trials) of singularly changing the drift rate or the boundary separation. In
each, we fixed a set of baseline parameters (t=0.30; v=1; a=2; z=0.60), and then increased or
decreased v or a by 40%. Note that in each panel, there is a bias toward approach (z>0.50), and
identifiably different features in the RT distributions of approach and avoid resulting from the

parametric changes. For more in-depth examples, see Ratcliff and McKoon (2008).
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Figure 2 Graded approach-avoidance paradigm reveals fine-grained behavioral responses

to conflict

(A) Participants approached (accept) or avoided (reject) offers pairing varying levels of monetary
reward with varying levels of painful electric shock (communicated via size of relevant bar) with a

single response during gradual onset of stimuli; see Methods for success, payout and error trials.

(B) Participants integrated reward (rew [b1, Eq. 1]) and cost (shk [bz, Eq. 1]) into choices, with a
greater weighting of reward (|rew|-|shk|>0), and a bias toward approach (int [bO, Eg. 1]) indicating
reward sensitivity. Error bars are standard error of the mean across parameter estimates for each

subject. ***p<0.001, **p<0.01.

(C) Choice consistency (Vchoice) Was lower and median response time (med. RT) was longer for

states identified (using logistic choice models) as high in conflict. ***p<0.001.

(D) In states of high conflict, participants had a wider boundary (a), had a lower rate of evidence
accumulation (v), had less of a bias toward approach (starting point (z)) and had a slightly shorter
nondecision time (t). Boundary units are arbitrary "evidence", and drift rate is in units of "evidence"
per second; starting point (z) is on a logit scale where positive values (i.e., >0.50) are closer to

approach boundary (see caption for Figure 1D). Nondecision time (t) is measured in seconds.
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Digitized violin plots contain 400 samples from parameter posterior. Summary data of posteriors
and key comparisons are in Table 2-1. Vertical white lines span posterior HDI. *credible Bayesian

difference between two parameters (61,082), i.e., 0¢HDI(D(81,82)), where D=[p(81|X1)-p(82|X2

)]

Figure 3 Interactive cross-modal collaboration associated with the decision boundary of

the drift-diffusion model (DDM)

(A) Separate flicker rates applied to reward and cost stimuli afforded capture of steady-state
visually evoked potential timeseries for reward (SSrew) and cost (SScst). In the "symmetry"
timeseries (SSsym), higher values reflect greater symmetry (more equal power) between the two
SS timeseries (-1*In|(SSrew-SSshk|)). Timeseries were averaged in early [0 to 1 s] and late [1 s to

2 s] time windows relative to offer onset.

(B) Lateralized stimuli afforded capture of alpha-power timeseries relevant for reward (alpharew)
and cost (alphacs). In the "symmetry" timeseries (alphasym), higher values reflect greater symmetry
(more equal power) between the two alpha timeseries (-1*In|(alphaew-alphasn|)). Timeseries were

averaged in early [0 to 1 s] and late [1 s to 2 s] time windows relative to offer onset.

(C) Posterior parietal delta and frontal-midline theta power. Timeseries were averaged in early [0

to 1 s] and late [1 s to 2 s] time windows relative to offer onset.
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(D) The pre-ejection period (PEP) is recorded with combined impedance cardiography (ICG) and
electrocardiography (EKG); shorter PEP indicates increased sympathetic beta-adrenergic
myocardial contractility. Our contractility estimates, where higher values reflect greater cardiac-
sympathetic drive (contractility=-1*In(PEP)), were averaged across each heartbeat in'a [0 to 2 ]

time window relative to offer onset.

(E) Singular models for DDM parameters {a,v,z,t} modeled by a single regressor (xi; i.e., either a
neural variable or contractility), separately for states of low and high conflict (Eq. 6). Six models
improved fits beyond the baseline model in Figure 2D. Fits assessed relative to baseline with
improvements in deviance information criterion (-ADIC), positive values reflecting better fit.

Double-headed (<) arrow denotes an association that could be negative or positive.

(F) Cross-modal models for DDM parameters {a,v,z,t} modeled by either additive or interactive
models winnowed from the fits in Figure 3E. Additive models (empty circles) modeled DDM
parameters by a neural variable (x1) in addition to contractility (cont.), separately for states of low
and high conflict; 16 regressors in total. Interactive models (circles with crosses) also included a
third regressor for the product of the neural signal and contractility [Eqs. 7-8]. Six models

improved fits beyond the best-fitting model in Figure 3E.

(G) Complement models (Eg. 9) asked if the fit of the best-fitting cross-modal model (which
included alphasnk; marked "m1" in Figure 3F) could be improved by adding the complement (i.e.,

set difference) of cross-modal models using neural variables that passed the singular model
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stage, using their best-performing forms (with or without interactions), marked with “m2” in Figure
3F. Each model improved fits beyond the best-fitting model in Figure 3F. In the best overall fitting
complement model (marked with *), DDM parameters were modeled by four regressors: alphas,

alphasym, contractility and alphasym*contractility.

(H) Proxy of variance explained (R?) by best fitting baseline, singular, cross-modal, and
complement models across varying RT bin sizes. Each trial's RT was simulated using a Wiener-
like process with relevant model parameters and regressors, and R2? values were derived from

Pearson correlations between RT bin medians (observed vs simulated).

Figure 4 Dynamics of the best-fitting complement model

(A-D) Parameter posteriors from best-fitting (complement) model of DDM parameters. Most
neural and cardiac-sympathetic relations involved the decision boundary (a). In both low- and
high-conflict states, wider boundaries were related to greater desynchronization of alphash,
greater symmetry in alpha (alphasym) and increased contractility. Unique to states of high conflict,
the boundary showed additional positive association with the alignment of cross-modal signals
(alphasym*contractility(cont.)). Digitized violin plots contain 400 samples from parameter posterior.
Summary data of posteriors are in Table 4-1. Vertical lines span highest density interval (HDI) of

coefficient posterior, and are white if HDI does not contain 0 (also marked with *), black otherwise.
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(E) Parameter posteriors from a model to discretize the neural and cardiac interactions associated
with the decision boundary. Boundary is widest (relative to the baseline, low conflict, low late
alphasym and low contractility—A boundary) in high conflict when alphasym and contractility are
both high. + and - symbols respectively reflect high and low (for physiology signals, relative to
participant medians). Digitized violin plots contain 400 samples from parameter posterior.
Summary data of posteriors and key comparisons are in Table 4-2. Vertical lines span the highest
density interval (HDI) of coefficient posterior and, are white if HDI does not contain 0. *** denotes
this posterior was credibly larger than all others depicted, i.e., 0¢HDI(D(81,682)), where D=[p(01

[X1)-p(B62|X2)] for all possible values of 62.

(F) Control models substituted proxy measures for local and global brain activity for all regressors
featuring contractility in the best-fitting complement model. The model substituting contractility
with global field power (GFP) was a slightly better fit. However, inspection of the parameters show
opposing associations with the boundary (marked by black arrows). That is, GFP's interaction
with alphasym was associated with a contraction of the decision boundary. Summary data of

posteriors for the GFP control model in Table 4-2.

(G) Phase-angle timeseries of alpha contralateral to reward (alphaewb - top) and cost (alphash® -
bottom) in high conflict, averaged across subjects separately for trials that were higher (dark red)

or lower (light red) than their median contractility.

(H) Summarizing phase coherence (absolute phase-angle value |6|) across early and late time
windows, we see a three-way interaction whereby late coherence diminishes significantly in high

contractility, and only in the alpha timeseries contralateral to reward.
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