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A B S T R A C T

Head-worn augmented reality (AR) offers exciting possibilities to help users learn new information. By blending 
digital content with the learner’s real-world environment, AR can create engaging and enjoyable experiences 
that may improve knowledge retention. Electroencephalography (EEG) allows for discreet, continuous moni
toring of brain activity at the scalp. This study examined whether the N400 event-related potential (ERP), a brain 
response linked to semantic processing, could be incorporated into a system combining AR and EEG. While the 
N400 is reliably elicited by a mismatch in meaning between two sequentially presented stimuli, there are two key 
outstanding questions. First, how do 3D objects presented in AR impact semantic processing as measured by the 
N400? Second, is there a reliable N400 to mismatches between an object and its name, in addition to mismatches 
in meaning? Twenty-four young adults viewed sequential pairs of stimuli through an AR headset while EEG was 
recorded. We manipulated whether the first stimulus was a 3D object or written word and whether the second 
stimulus matched or mismatched the first in terms of meaning or name. Participants’ reaction times were slower 
for mismatching pairs when compared to matching pairs in all conditions. Averaged ERP and single-trial clas
sification analyses showed robust differences in brain responses. Additionally, participants were more accurate 
and exhibited faster behavioral and brain responses for naming compared to meaning judgments. These results 
suggest the N400 could be used in a combined AR-EEG system to provide feedback on semantic understanding, 
potentially opening exciting new avenues for enhancing learning.

1. Introduction

Success in many areas of life—from acing an exam, to delivering a 
compelling presentation at work, to learning a new language—often 
depends on one’s ability to learn and remember information effectively. 
Continuously testing oneself on new information throughout the 
learning process is a powerful learning strategy (Roediger & Butler, 
2011), presumably because it requires active retrieval of information 
from memory, strengthening connections in the neural pathways asso
ciated with that information (Ye et al., 2020). AR offers several benefits 
for learning that may enhance these learning processes because it can 
blend educational content with relevant objects in a learner’s everyday 

environment, creating a more engaging and enjoyable learning experi
ence and leading to improved knowledge retention (Dunleavy et al., 
2009; Ibrahim et al., 2018). As a first step, here we test whether there is 
evidence for semantic knowledge of objects presented in augmented 
reality (AR), using simultaneously measured brain activity via electro
encephalography (EEG). EEG is an important tool that allows for 
continuous, noninvasive monitoring of rapid perturbations in human 
brain activity (Giesbrecht & Garrett, 2025). We propose that brain ac
tivity based recognition could be achieved by tracking a specific neural 
response known as the N400 which is linked to the processing of 
meaning (Kutas & Federmeier, 2011). The goal of this study is to 
investigate whether the N400 has the potential to be used in a combined 
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AR-EEG setup to provide feedback on object recognition, potentially 
making it a viable tool for assessing the presence of semantic knowledge 
about objects in the environment.

The N400 is a brain signal that occurs in response to conceptually 
meaningful stimuli (Kutas & Federmeier, 2011; Kutas & Hillyard, 1980; 
Lau et al., 2008). It is often studied by presenting pairs of words one after 
the other, where the second word is either semantically congruent or 
incongruent with the first (Deacon et al., 2000; Gomes et al., 1997; 
Holcomb, 1988; Holcomb & Neville, 1990). When the word pair is 
semantically incongruent, a large negative deflection in the waveform is 
observed over central scalp regions, beginning approximately 400 ms 
after the onset of the second word. The N400 can be elicited by a wide 
range of stimulus types, including sounds, images, videos, objects and 
actions (Kutas & Federmeier, 2011) and can be observed across species 
(Boros et al., 2024). It is well characterized and has been used to study a 
wide range of phenomena, such as language comprehension, memory 
and attention (Bornkessel-Schlesewsky & Schlesewsky, 2019; Coronel & 
Federmeier, 2016; Fitz & Chang, 2019; Giesbrecht et al., 2007; Hodapp 
& Rabovsky, 2021; Kuperberg et al., 2020; Rabovsky et al., 2018; Sy 
et al., 2013). Although the N400 was originally labeled as a relative 
negativity peaking around 400 ms, the timing and shape of the response 
can vary as a function of experimental manipulation, so we use the term 
N400 here as a heuristic label for stimulus-related brain activity in the 
~300–600 ms post-stimulus window with a characteristic waveform 
shape (Kutas & Federmeier, 2011). Because the N400 indexes the 
meaning of information relative to an individual’s understanding of that 
information, it is a signal of interest for BCIs. Indeed, BCI researchers 
have used the N400 for a variety of applications (Dijkstra et al., 2020; 
Kaufmann et al., 2011, 2013; Lytaev, 2021; van Vliet et al., 2010).

Given that the N400 brainwave is triggered by unexpected or 
incongruent information, it could plausibly be used to detect whether a 
user has recognized (and thus learned) an object correctly. For example, 
imagine a scenario where a medical student is using AR glasses to help 
them study human anatomy. The student brings up a digital 3D model of 
the human musculoskeletal system in the glasses and then fixates on a 
specific muscle and attempts to recall its name. The glasses then show a 
text label next to the muscle with either the correct or incorrect name. If 
the label is incorrect and the student knows that it is incorrect, then their 
brain activity should reflect this mismatch and an N400 response should 
be observed. However, if they do not know the correct name and fail to 
recognize that the label is incorrect, then we would not expect an N400 
to be observed. Thus, a combined AR-EEG system capable of detecting 
the presence of the N400 could be used to track user understanding and 
provide personal feedback. Another situation that might involve a user 
looking at objects in the physical world, rather than in a digital envi
ronment, is language learning - a scenario where AR can be a particu
larly powerful tool (Huynh et al., 2019a, Huynh et al., 2019b; Ibrahim 
et al., 2018). For example, imagine a student learning French. They look 
at a computer and try to remember the French word for it ("ordinateur"). 
Their AR glasses then show a word—it might be the correct translation 
("ordinateur") or an incorrect one ("bouteille", meaning water bottle). If 
the incorrect word is shown and the student knows that it is incorrect, 
then an N400 mismatch response would be expected in their brain ac
tivity. But if they don’t know the correct word, this signal would not 
appear, suggesting that they don’t understand the word and require 
more practice. The AR system could then relay this information to the 
student and suggest words that need further revision.

To determine the viability of the N400 signal there are two knowl
edge gaps that need to be addressed. First, it is unclear how 3D objects 
presented in AR impact the N400 response. The N400 is typically studied 
using pairs of words, 2D images on a screen, sounds, or combinations of 
these stimuli (Barrett & Rugg, 1990; Calma-Roddin & Drury, 2020; 
Ganis et al., 1996; Holcomb, 1988; Lin et al., 2022; Nigam et al., 1992; 
Ortu et al., 2013). However, to our knowledge there have been no 
studies that have analyzed N400 responses to 3D stimuli presented via 
an AR headset. Considering that the dynamics of this endogenous signal 

are consistent across multiple stimulus presentation modalities 
(Federmeier & Laszlo, 2009), it stands to reason that the N400 will 
respond similarly to 3D object and word pairs. Second, the N400 has 
largely been studied in the context of a semantic mismatch between two 
stimuli presented in a sequential fashion. Here, the goal is to determine 
whether the N400 can provide a reliable signal to provide feedback on 
object recognition (i.e., naming), but the N400 is not well characterized 
for mismatches of this nature. Additionally, combining AR and EEG will 
present unique technical challenges, as it will require precise synchro
nization between the stimuli presented in the AR environment and the 
corresponding brain responses recorded in the EEG. A major challenge is 
that AR devices often lack the necessary ports (or access to the necessary 
ports) for sending event markers to EEG amplifiers, which is crucial for 
precise synchronization between the two systems.

In the present study we address the previously outlined knowledge 
gaps and technical challenges. Participants completed variants of a pair- 
matching task, presented via an AR headset while brain activity was 
simultaneously recorded at the scalp with EEG. The task involved the 
presentation of a pair of stimuli on each trial. To investigate our first 
research question—the impact of 3D object stimuli on the N400—we 
manipulated the first stimulus in the pair so that it was either a written 
word (as is common in pair-matching tasks that are used in in
vestigations of the N400) or a 3D object. To investigate our second 
research question—semantic associations versus naming 
associations—we manipulated the second stimulus so that it was either 
congruent or incongruent in meaning (i.e., semantics) or in terms of 
name (i.e., label). In order to ensure accurate synchronization across AR 
and EEG devices we also devised and validated a hardware solution that 
involved sending pulses via the headphone jack on the AR device at the 
same time as critical visual stimuli were presented via the headset. The 
two independent variables were manipulated in a full factorial design to 
create four conditions. Results showed that both behavioral and brain 
responses were different in all conditions, such that reaction times were 
slower to mismatching compared to matching stimulus pairs, and both 
ERP and classification analyses showed robust differences in neural re
sponses to the second stimulus. Furthermore, participants responded 
more rapidly when they were required to make naming judgments 
compared to semantic association judgments. Together, the results 
represent a promising first step towards using the N400 in a system that 
combines AR and EEG to provide feedback on object recognition, 
potentially opening exciting new avenues for enhancing how we learn 
information.

2. Methods and materials

2.1. Participants

Twenty-four healthy, English language proficient adults aged 18–32 
(15 females, 22 right handed, Mage = 21.25, SDage = 3.33) volunteered 
to participate in the study. Participants reported normal or corrected-to- 
normal vision. Informed consent was provided at the beginning of each 
session. Participants received $15/hr for their participation (~2 h total 
per participant). All procedures were approved by the University’s 
Human Subjects Committee.

The sample size was determined based on three factors. First, a 
power analysis (α = .05, power = .80, large effect size) indicated a 
minimum of 15 participants. Second, a literature review showed that 
early N400 research typically used samples of 24 or fewer (Holcomb, 
1988; Kutas & Van Petten, 1988), and N400 BCI studies carried out with 
non-clinical populations often have samples of 12–20 (Dijkstra et al., 
2020). Third, full counterbalancing of our four conditions required a 
minimum of 24 participants. Considering these factors, we determined 
that a sample size of 24 was suitable.
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2.2. Cognitive task

The task was presented to participants using a Magic Leap 1 AR 
headset (ML1, Magic Leap, Plantation, FL, USA). The task was imple
mented and controlled using custom scripts for Unity3D (2022.3.21f1 
version, Unity Technologies, San Francisco, USA). Each trial of the task 
involved the sequential presentation of a pair of stimuli. The first 
stimulus could either be a word or a 3D object model, while the second 
stimulus was always a word. Each trial began with the presentation of an 
“X” at the center of the field of view (FOV) of users (1 s), acting as the 
fixation point. The first stimulus then appeared at the center of the FOV 
and remained on screen for 1 s. The first stimulus was either a word (e.g., 
“Sunglasses”) or an object (e.g., sunglasses 3D model). Following a 1 s 
inter-stimulus interval, the second stimulus was then presented at the 
center of the FOV for 1 s. During the appearance of the second stimulus 
(e.g., “Eyes”), responses were made for that trial. Each trial took 6 s and 
this trial sequence repeated until the task reached either the end of a task 
block (i.e., block break) or the end of the task.

Two independent task manipulations were implemented to assess the 
impact of judgement type and stimulus modality on the N400 response. 
For the judgment manipulation, participants were required to make 
labeling or association judgments for each stimulus pair. For the mo
dality manipulation, the first stimulus in the pair was either a 3D object 
or a written word. The “judgement” and “modality” variables were 
factorially combined to create four task conditions: model-word asso
ciation (MWA), word-word association (WWA), model-word label 
(MWL), and word-word label (WWL). Conditions were presented in 
blocks of 100 trials.

In each condition, participants were required to indicate on each trial 
whether or not the stimulus pair was congruent (i.e., matching) or 
incongruent (i.e., non-matching). The nature of this congruence judg
ment was manipulated between task conditions. In the “association” 
conditions, participants were required to indicate if the second stimulus 
was semantically associated (i.e., congruent) or unassociated (i.e., 
incongruent) with the first stimulus. For example, in a MWA trial, if the 
model “clock” was followed by the word “time”, the correct response 
would be congruent because clock and time are semantically associated. 
If, however, the model “clock” was followed by the word “syrup”, the 
correct response would be incongruent. In a WWA trial, if the word 
“waffle” was followed by the word “syrup”, the correct response would 
be congruent, again, because these words are semantically associated. If, 
“waffle” was followed by the word “time”, the correct response would be 
incongruent. In the “label” conditions, participants were required to 
indicate if the second stimulus was the correct (i.e., congruent) or 
incorrect (i.e., incongruent) label for the first stimulus in the pair. For 
example, on a MWL trial, if the model “waffle” was followed by the word 
“waffle”, the correct response would be congruent, but if the word was 
“western”, the response would be incongruent. In a WWL trial, if the 
word “clock” was followed by the word “clock”, the correct response 
would be congruent, but if it was followed by the word “syrup”, the 
correct response would be incongruent. Participants registered their 
responses via a wireless keyboard (Arteck 2.4 GHz Compact Keyboard) 
by pressing the “m” key if they judged the pair to be congruent or the “z” 
key if they judged the pair to be incongruent.

The 3D models and words that were presented in the task were 
specifically selected so that they were unambiguous and relatively 
straightforward for participants to identify and respond to. The stimuli 
spanned a diverse set of categories representing familiar objects 
encountered in daily life, including household items (e.g., lamp, bed, 
dresser), office essentials (e.g., desk, monitor, chair), kitchenware (e.g., 
pan, silverware, appliances), sports equipment, and objects found in 
outdoor or public spaces. See Fig. 1a and b for a diagram of the trial 
sequence and examples of the stimulus pairs used in each condition.

2.3. General Procedure and EEG instrumentation

General Procedure. Upon arrival, the experimenter outlined the study 
and obtained informed consent from the participant. The participant 
was then fitted with an AR headset and completed practice tasks for 
WWL and MWA. After the participant completed the two practice tasks 
and confirmed no symptoms related to cybersickness, the AR headset 
was removed and EEG setup commenced.

While seated in a chair, the participant was fitted with an EEG cap 
(see EEG Instrumentation). The AR headset was then positioned over the 
EEG cap (see Fig. 1c). The experimenter provided task instructions and 
indicated the judgement type of the two response keys prior to each task 
condition. The participant was instructed to maintain fixation at center 
throughout each trial and to respond as quickly and accurately as 
possible. They were also instructed to relax and minimize head and body 
movements. Participants were given the opportunity to take a rest break 
halfway through each block and between blocks (~12 min total per 
condition/block). Condition order was counterbalanced between par
ticipants. Prior to each condition, participants completed a practice task 
(14 trials per condition) to ensure that they were familiar with the task 
and instructions. Upon completion of the full experiment the participant 
was thanked and paid for their time in the lab. Each session lasted ~2 h, 
including ~1 h for EEG setup. The full experimental procedure is out
lined in Fig. 1d.

EEG Instrumentation and Recording. EEG data was recorded using a 
Brain Products ActiCHamp system (actiCHamp Plus, Brain Products 
GmbH, Gilching, Germany) consisting of 64 active electrodes arranged 
in an actiCAP elastic cap and placed in accordance with the 10–20 
System. Electrodes TP9 and TP10 were adhered directly to the right and 
left mastoids. Connections were established between electrodes and the 
scalp using a viscous gel (SuperVisc, Brain Products). At the beginning of 
the investigation all impedances were reduced to below 15 kΩ. Data 
were sampled at 1000 Hz.

2.4. EEG and AR event synchronization

Precise time-synchronization between EEG recording and stimulus 
presentation within the AR headset is required to generate accurate 
ERPs. In traditional EEG/stimulus presentation setups, event codes are 
sent from a stimulus presentation computer to the EEG amplifier via a 
cable (TTL pulse). This is referred to as a “hardware trigger” approach. 
Hardware triggers, which are saved alongside EEG data at the exact time 
of their occurrence, offer the most precise way to synchronize EEG with 
stimulus presentation, which is critical when one is investigating event- 
related brain responses. Alternative synchronization methods are 
possible, such as sending event codes over a network from stimulus 
presentation device to EEG machine, or synchronizing event timestamps 
from the stimulus presentation and EEG machine data log files. How
ever, while these approaches may eliminate the need for additional 
hardware, they sacrifice timing precision by introducing jitter, which 
can impact data quality. The Magic Leap 1 headset only has a single USB 
C slot which we were unable to access to send TTL pulses via Unity, so 
this standard approach was not viable. Instead, we developed an alter
native custom hardware solution for sending event codes from the Magic 
Leap 1 headset to the EEG amplifier (Fig. 2). Specifically, a 3.5 mm audio 
cable was plugged into the headphone jack of the Magic Leap compute 
pack and fed into the output of a StimTrak device (Brain Products) 
which was connected to the EEG amplifier. During the task, at the onset 
of the second visual stimulus in each pair, a brief tone was played. This 
tone was not audible to the participant, but instead the sound was 
transmitted via the audio cable to the StimTrack, where it was converted 
to an electrical pulse which was precisely synchronized and stored 
alongside the recorded EEG data. Each tone created a large voltage in
crease from baseline, which could easily be detected and then converted 
into a timestamp. The timestamps were then synchronized with the trial 
structure and converted into meaningful event codes that could then be 
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Fig. 1. Methods. (a) Trial sequence from the participant view within the AR headset (MWA trial example depicted above). Each trial began with a fixation cross 
(1000 ms), followed by the first stimulus (1000 ms), an inter-stimulus interval (1000 ms) and then the second stimulus (1000 ms). The participant had a brief time 
window (2000 ms) from the onset of the second stimulus in which to indicate with a keypress whether the first and second stimuli were congruent (“m”) or 
incongruent (“z”). In this example the beach ball is associated with “play”, so the correct response would be “m”. (b) Schematic representations of stimulus pairs are 
shown for each of the four conditions for both congruent and incongruent trial examples. (c) A fully instrumented participant performing the task. (d) Overview of the 
complete experimental procedure.
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used to parse the data into epochs in EEGLAB.
Next, we ran a test to validate the timing consistency of our hardware 

triggering approach. It was important to check whether there was any 
lag between the presentation of a stimulus on the Magic Leap screen and 
the onset of the tone, and if so, how consistent was this lag across trials. 
To determine the characteristics of any lag, we wrote a simple script in 
Unity that repeatedly rendered a high-contrast 3D model (a large white 
sphere) to the Magic Leap screen and simultaneously played a tone. The 
sphere and tone were presented 120 times at a rate of 1 Hz. To measure 
the precise onset of the visual stimulus (3D sphere), we attached a 
photodiode (Brain Products) to the Magic Leap screen and fed the 
photodiode into the EEG amplifier. When each sphere appeared, this 
caused a large voltage increase in the photodiode trace relative to 
baseline, which could easily be identified. The audio trace was con
verted to an electrical signal using the hardware approach described 
above, and the pulses generated by the tones were also easily identified. 
For each stimulus presentation, we were then able to compare the pre
cise ground truth onsets for both visual and auditory stimuli and 
establish whether there was a lag between the two, and how consistent 
the lag was over many trials. We collected 120 trials of data and found 
that the mean lag between the presentation of the visual and auditory 
stimuli was 110 ms with 11 ms standard deviation. We then corrected 
the timing in all EEG analyses by the mean lag value.

2.5. EEG preprocessing

EEG Initial Preprocessing. To prepare the raw EEG data for analysis, 
we first converted the audio pulse triggers to meaningful event codes as 
described in Section 2.4 and next applied a 30 Hz low-pass filter to 
reduce muscle noise and a .1 Hz high-pass filter to remove slow drifts. 
The data were then downsampled from 1000 Hz to 250 Hz for faster 
processing. Noisy electrodes, identified based on low correlation with 
surrounding channels (r < .85), flatlining (>5 s), or excessive values (>4 
standard deviations of the overall population), were interpolated using 
spherical interpolation. On average, 4.79 ± 2.62 (mean ± std) elec
trodes were interpolated per participant. All processing was performed 
offline using custom MATLAB scripts and EEGLAB toolbox functions 
(Delorme & Makeig, 2004).

ERP and Classification Preprocessing. For both ERP and classification 
analyses we first re-referenced the EEG data and removed eye- 
movement artifacts using the AAR toolbox (Gomez-Herrero et al., 
2006). Then, to isolate brain activity specifically related to the second 
word in each pair, we epoched the data around the onset of the second 
word (from − 200 to 1000 ms) and baseline-corrected it using the 200ms 
pre-stimulus period. Trials with extreme voltage values [±100 μV] 
across a grouping of critical scalp channels (’CPz’, ‘CP3′, ‘CP4′, ‘C3′, ‘Cz’, 
‘C4′, ‘FC3′, ‘FCz’, ‘FC4′, ‘F3′, ‘Fz’, ‘F4′) were excluded (<2 % across all 
conditions) and incorrect responses were also removed. For ERP analysis 
the remaining trials were then averaged separately for congruent and 
incongruent word pairs to create averaged waveforms. For classification 
analysis, the trials were not averaged.

Quantifying ERPs. To analyze the differences in brain responses to 
congruent and incongruent word pairs, we created difference waves by 
subtracting the congruent ERP waveform from the incongruent wave
form. This allowed us to clearly visualize and quantify how these brain 
responses diverged over time. We then identified the peak latency of 
each difference wave, which represents the time point with the 
maximum positive amplitude within the time window where the N400 
would reasonably be expected to be observed (200–800 ms). If no clear 
peak was present for an individual participant and condition, we used 
the average peak latency for that condition. Finally, we calculated the 
mean amplitude of the difference wave by averaging the data points 
within a ±20 ms window around the peak latency. This approach 
allowed us to quantify the timing and magnitude of the brain’s responses 
to our factorial combination of stimuli.

2.6. Machine learning approach

Classifying Stimulus Pair Congruency. A single logistic regression 
model was trained on voltage potentials recorded at each electrode 
across all trials to classify the congruency between presented stimulus 
pairs (i.e., incongruent versus congruent trials). The model was evalu
ated using a 10-fold cross-validation scheme, with each fold constrained 
to include an equal number of trials per condition and a comparable 
number of congruent and incongruent trials. Within each training fold, 
data were augmented by averaging voltage potentials over time using a 

Fig. 2. Equipment. Participants were fitted with an EEG cap and AR headset and made responses via a keyboard. To precisely mark the second stimulus onset in our 
EEG recording, we also played a tone, which was not heard by the participant but rather sent to a separate device (StimTrack, Brain Products) via an audio cable 
connected to the headphone jack of the Magic Leap 1 headset. This tone was converted to a pulse, which was synchronized with the brain data, providing a pre
cise timestamp.
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10 ms sliding window (step size = 1 sample), enabling the model to learn 
from the entire temporal profile of each trial. For testing, the trained 
model was applied to the held-out fold, and predictions were generated 
over time using average voltage activity within a 10 ms sliding window 
(step size = 1 sample). This approach enabled the assessment of when 
the trial congruency-related information was most discriminable. Model 
performance and generalizability were quantified using a balanced ac
curacy score. In short, this metric is computed by averaging the recall 
rate, or the number of true positives (TP) divided by total number of TP 
and false negatives, across class labels. The advantage of using this 
metric over a traditional un-balanced accuracy score is that it ensures 
above chance decoding is not driven by the model learning the preva
lence of each class, but rather is due to differences in neural activity. 
Balanced accuracy scores across validation folds were averaged to yield 
a single measure of classification performance, which is referred to 
henceforth as “validation accuracy” for brevity. LASSO regularization 
was applied during model training to reduce overfitting and identify 
electrodes that contributed to congruency classification. A null com
parison distribution was generated by repeating the 10-fold cross- 
validation procedure on randomly permuted trial congruency labels 
for 250 iterations. True validation accuracy was compared to this dis
tribution (see Section 2.7 Hypothesis Testing) to determine whether it 
was significantly above chance.

2.7. Hypothesis Testing

Significance Testing. Statistical significance in all tests was assessed by 
using a non-parametric permutation-based resampling approach to 
empirically approximate null distributions for F and t statistics (Bullock 
et al., 2017, 2021, 2023a; Foster et al., 2016). This testing approach has 
the advantage of being robust to normality violations. Specifically, for 
each test, condition labels were shuffled within participants and 1000 
iterations of the appropriate statistical tests were run (repeated-meas
ures ANOVAs and/or paired-samples t tests) to generate null distribu
tions of F and t statistics. Reliable differences were then tested for by 
computing the probability of obtaining F and t statistics from each null 
distribution that were greater than the observed F and t statistics. The F 
and t statistics are then reported along with the critical p-value (labeled 
pnull) which represents the probability of observing a value greater than 
this in the null distribution. Statistical test outcomes for non-continuous 
data (i.e., data that are averaged across testing blocks, such as accuracy 
and RT) are reported in the text. Here, to convey a more precise estimate 
of the observed statistic’s position in the null distribution, tests are re
ported as pnull<.05, pnull <.01 and pnull<.001. A test result of pnull>.05 
indicates that the result was not statistically reliable. Effect sizes are 
reported as partial eta squared (ηp

2) for ANOVAs (small: ηp
2 = .01, mod

erate: ηp
2 = .06, large: ηp

2 = .14) and Cohen’s d for t-tests (small: d = .02; 
medium: d = .05; large: d = .08). Statistical test outcomes for continuous 
time-course data (i.e., ERP waveforms, classification) are reported 
visually in each figure to provide insight into the temporal dynamics of 
each measure. Here, ANOVA and t-test outcomes where pnull < .05 are 
represented by the presence of horizontal bars superimposed onto the 
plots, where the presence of a bar at a given time point indicates a sig
nificant difference. The time-course analyses presented here rely on 
repeated comparisons at multiple timepoints, which raises the possi
bility of increased inferential error, however, the effects that are 
described are present across multiple timepoints and no inference relies 
on a single comparison but rather a consistent pattern across time. 
Furthermore, a cluster-based correction procedure was performed for 
classification analyses to mitigate spurious statistical differences 
(Cohen, 2014).

Data Visualization. Data were visualized using functions from the 
Seaborn and Matplotlib Python Libraries (Hunter, 2007; Waskom, 2021) 
and MATLAB.

3. Results

First, we report participants’ behavioral performance on the task, to 
determine how our independent variables (judgement type: association, 
label; and modality: model, word) impacted participants’ accuracy and 
RT on each trial as they assessed whether each stimulus pair was 
congruent or incongruent. Second, we plotted ERPs to determine 
whether an N400 was present in each of the four conditions, and then 
ran analyses to characterize the differences in waveform morphology 
between conditions. Third, we present the results of a logistic regression 
classification analysis, to assess the viability of the N400 signal for use in 
a potential AR-BCI for learning.

3.1. Behavioral performance was consistently good in all conditions

Accuracy. Performance was generally good in all conditions (Fig. 3a). 
Accuracy data were submitted to a 2 [judgement type: association, 
label] x 2 [modality: model, word] x 2 [congruency: congruent, incon
gruent] repeated-measures ANOVA. Participants’ accuracy was higher 
in the label conditions compared to the association conditions, sup
ported by a main effect of judgment type [F(1,23) = 18.47, pnull < .001, 
ηp

2 = .45]. There were no significant main effects of modality or con
gruency, and no interaction effects between any variables [all pnull >

.05].
RT. Participants’ responses were faster in the label conditions 

compared to the association conditions, supported by a main effect of 
judgment type [F(1,23) = 127.57, pnull < .001, ηp

2 = .84]. Responses 
were also faster to congruent trials when compared to incongruent trials 
[F(1,23) = 56.84, pnull < .001, ηp

2 = .72] (Fig. 3b). Participants were 
slower at identifying word-word pairs compared to model-word pairs in 
the association conditions but not in the label conditions, supported by 
an interaction between judgment type and modality [F(1,23) = 14.71, 
pnull < .001, ηp

2 = .39] and pairwise comparisons [MWA vs WWA: t(23) 
= 2.32, pnull <.05, d = .47; MWL vs WWL: t(23) = 1.68, pnull >.05, d =
.34; all other comparisons pnull >.05]. Participants were also slower at 
responding to incongruent trials when compared to congruent trials in 
the label conditions, supported by an interaction between judgement 
type and congruency [F(1,23) = 12.61, pnull < .01, ηp

2 = .35] and pair
wise comparisons [MWA vs MWL: t(23) = 3.72, pnull < .001, d = .76; all 
other comparisons: pnull > .05] (Fig. 3c).

3.2. Robust N400 ERPs were observed in all conditions

ERPs and their corresponding difference waves (incongruent minus 
congruent), computed across fronto-central, central, and parietal re
gions, are displayed for each experimental condition in Fig. 4(a–d). All 
conditions showed robust statistical differences beginning between 
~200 and 300 ms after the second stimulus appeared, confirming 
consistent N400 brain responses. However, the shape of the waveforms 
appeared to be visually different between conditions, suggesting our 
experimental manipulations (modality and judgment type) induce 
different patterns of brain activity. To better characterize these effects, 
we plotted the difference waves for each condition together (Fig. 4e). 
Mean amplitude (Fig. 4f) and peak latency (Fig. 4g) measures for the 
difference waves were submitted to a repeated-measures ANOVA. Mean 
amplitude was not different across conditions [all F(1,23) < 4.50, pnull >

.05, ηp
2 <.16 ]. Peak latency was earlier in the label conditions compared 

to the association conditions [F(1,23) = 49.61, pnull < .001, ηp
2 = .68]. 

Stimulus modality had no effect [F(1,23) = .001, pnull >.05, ηp
2 = .001] 

and there was no interaction [F(1,23) = .06, pnull > .05, ηp
2 = .003].

3.3. Classification

The main aim of this study was to assess whether the N400 is a viable 
signal for use in a combined AR-EEG system to assess semantic knowl
edge and potentially enhance retrieval learning. In the previous analysis 
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we observed robust N400 ERPs in all conditions, confirming that we can 
successfully parse the brain’s averaged responses to congruent and 
incongruent trials for all judgment and modality combinations. How
ever, if the possible end goal is to take advantage of this signal for near 
real-time tracking of brain responses in a BCI system, then we need to 
determine how accurately brain responses to individual trials can be 
classified based on the congruence of each stimulus pair. A single logistic 
regression model trained and tested over time using a cross-validation 
approach revealed above-chance classification accuracy classifying 
congruent vs. incongruent trials in all four conditions relative to a 
permuted control. Successful decoding was observed to occur earlier in 
the label conditions (WWL: ~116ms; MWL: ~200ms) compared to the 
association conditions (MWA: ~304ms; WWA: ~304ms) (Fig. 5). There 
was a significant main effect of both judgement type (~192ms) and 
stimulus modality (~188ms) early on in the trial period, but no 
interactions.

4. General discussion

This study investigated the viability of the N400 ERP component as a 
candidate brain signal for assessing semantic knowledge within AR. We 
recorded 64-channel EEG while participants completed a pair-matching 
task presented via an AR headset. To examine the influence of stimulus 
modality on the N400, we manipulated whether the first stimulus in a 
pair was a 3D object or a written word. We also varied whether the 
second stimulus was congruent or incongruent with the first stimulus in 
terms of meaning or name, to compare semantic and naming associa
tions. To ensure precise time synchronization between the AR and EEG 
systems, a novel hardware solution was implemented and validated, 
involving event-locked pulses sent through the headphone jack of the AR 
headset. Participants performed well at all variations of the task, 
responding faster to congruent pairs relative to incongruent pairs, and 
making faster judgments in label conditions compared to association 
conditions. Analysis of brain activity data over central and fronto- 
central scalp regions revealed patterns that complemented behavior, 
with robust differences between responses on congruent and incon
gruent trials and earlier differentiation in naming when compared to 
association conditions. Furthermore, machine-learning analyses 
revealed that the N400 could be used to classify congruent versus 
incongruent pairs on a single-trial basis, with successful classification 
occurring earlier in label compared to association conditions, hinting 
that the N400 might be a viable signal to use in an BCI context if clas
sification accuracy were to be improved.

The N400 is typically studied by having participants judge the se
mantic congruency of a target stimulus (such as a word, image or sound) 
with a preceding stimulus. A congruency effect is then typically 

observed in their behavioral responses, such that responses are slower 
when the target stimulus is semantically incongruent (Gomes et al., 
1997; Holcomb, 1988; Holcomb & Neville, 1990; Kutas & Federmeier, 
2011). Here we show this congruency effect in all four conditions, 
indicating that the effect is present regardless of whether the first item in 
each stimulus pair is a 3D model or word, and if the task is to make an 
association or labeling judgment. However, there was a diminished 
congruency effect in MWA compared to MWL, which suggests that 
participants found it more challenging to make association judgments 
than labeling judgements when the first stimulus was a 3D model. In 
contrast, the congruency effect across WWA and WWL was not statisti
cally different, implying that the smaller congruency effect was specific 
to MWA. It is not clear why the congruency effect is smaller in MWA, but 
one might presume this is because people are less familiar with our 3D 
models, making them harder to identify and process. Indeed, it is 
well-established that picture naming takes longer than word reading 
(Valente et al., 2016), arguably due to the “uncertainty factor”, where a 
picture can often be named in several different ways but only a single 
response can be given for a written word (Ferrand, 1999). However, the 
data do not support this, as accuracy and RT in MWA is similar to WWA, 
where participants made association judgments on two words. We also 
observed notably faster responses to label conditions when compared to 
association conditions, indicating participants found naming judgments 
easier than label judgments. It was most critical that we observed a 
robust congruency effect in the MWL condition, as this condition most 
closely approximates a retrieval learning scenario, i.e., the user will 
view a physical or digital 3D object and then a text label will appear 
either correctly or incorrectly naming the object. This behavioral result 
indicates participants are making congruency judgments in MWL, which 
should elicit N400 responses.

Traditional ERP analyses of the brain data confirmed the presence of 
robust N400 responses in all experimental conditions across central and 
fronto-central scalp regions, with clear separation between congruent 
and incongruent trials ~200–600 ms post onset of the second stimulus 
regardless of the modality of the first stimulus or judgment type. These 
results further support the amodal nature of the N400, demonstrating 
that it can be reliably elicited by 3D models in AR, consistent with 
previous findings that the N400 can be elicited by words, 2D images 
presented in a screen, sounds, or combinations of these stimuli (Barrett 
& Rugg, 1990; Calma-Roddin & Drury, 2020; Ganis et al., 1996; Hol
comb, 1988; Lin et al., 2022; Nigam et al., 1992; Ortu et al., 2013). The 
results also demonstrate that a reliable N400 can be elicited when par
ticipants make naming judgments, which expands on previous N400 
studies where participants are required to make semantic association 
judgments (Kutas & Federmeier, 2011). Critically, for the purposes of 
our proposed AR-EEG learning system, it was most important that we 

Fig. 3. Behavior. Panels (a) and (b) depict accuracy and response times for stimulus pair judgments in each of the conditions, separated as a function of pair 
congruence (Con) or incongruence (Inc). In (c) we plot the RT differences between congruent and incongruent trials for each condition (difference = incongruent - 
congruent). Horizontal gray and white lines in boxplots represent group median and mean, respectively. ***pnull < .001.
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observed an N400 response in the model-word label condition, and 
indeed this was the case. Interestingly, the shape of the waveforms was 
markedly different as a function of judgment type, with separation be
tween congruent and incongruent waveforms occurring earlier in 
naming conditions when compared to association conditions, as evi
denced by comparison of the timing of the ERP difference waves. 
Furthermore, when participants were required to make semantic judg
ments, the difference between congruent and incongruent trials was 
driven by the negative deflection to congruent trials (the typical N400 

effect), but when participants were required to make naming judgments, 
the difference was mainly due to a positive deflection in congruent trials. 
This suggests that even though both types of judgments involve under
standing the meaning of objects and words, the underlying brain pro
cesses are different. The consistent congruency effect across conditions 
and also the earlier separability when making label judgments compared 
to association judgments is consistent with the patterns observed in 
behavior, such that participants responded more rapidly to congruent 
than incongruent pairs in all conditions, and faster in label versus 

Fig. 4. Brain responses to stimulus pairs. Panels (a–d) show event-related potentials (ERPs) time-locked to the second word, with difference waves (incongruent 
minus congruent) highlighting the congruency effect. Horizontal blue bars at the base of each plot indicate significant differences between congruent and incongruent 
waveforms. Topographic maps depict scalp activity distribution averaged across a group of central and fronto-central electrodes (marked with white dots) and 
between 200 and 600 ms. Panel (e) overlays difference waves across conditions to allow for ease of comparison, while (f) and (g) show mean amplitude and peak 
latency of the difference waves, respectively. ***pnull < .001. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.)
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association conditions. A possible explanation for why naming judg
ments are faster than meaning judgments is due to differences in the 
directness and automaticity of the underlying neural processes. For both 
naming and meaning judgments, visual information must be processed 
up to the level of object recognition. This involves a hierarchical 
network of occipital and temporal regions, notably the inferotemporal 
cortex for object recognition (Cichy et al., 2014; DiCarlo et al., 2012) 
and left occipitotemporal cortex for word recognition (Mano et al., 
2013; Xu et al., 2015). In addition, meaning judgments also require that 
the meanings of both items in the stimulus pair are accessed and 
compared, which may involve a more distributed network of left later
alized brain regions (Binder et al., 2009; Giesbrecht et al., 2004). These 
additional cognitive processing demands may contribute to the delayed 
RTs and N400 responses for meaning compared to naming judgments.

Having established the presence of an N400 response in all condi
tions when averaged across trials, the next step was to test whether 
neural responses to congruent and incongruent stimuli could be classi
fied on a single-trial basis. Logistic regression classification confirmed 
that above-chance classification accuracy could be observed in each of 
the conditions ~304 ms post-stimulus onset. Successful decoding ac
curacy was observed earlier for the label relative to the association 
condition, which is consistent with the timing of ERP difference waves 
between these two experimental manipulations. The fact that classifier 
accuracy was above chance in all conditions (particularly MWL) sug
gests that the N400 is potentially a viable candidate for use in a BCI 
context. However, we must acknowledge that while classifier accuracy 
was at above chance levels in all conditions during the N400 window, it 
did not reach the level of performance required for a BCI. This is likely 
due to noise in EEG data and the relatively low number of trials pre
sented to participants in each condition. Indeed, prior work has shown 
that increasing the number of stimuli per class dramatically boosts N400 
detection rates (Dijkstra, Farquhar, & Desain, 2019; Dijkstra et al., 
2020), suggesting this is a signal-to-noise issue. In the present study our 
main goal was to compare how different types of stimuli (3D objects vs. 
written words) and judgments (naming vs. association) affected the 
N400 brain response. To do this, we needed four different conditions in 
our experiment, limiting the amount of time spent on each condition, so 
we could only reasonably run 100 trials per condition. It is reasonable to 
predict that classification accuracy would be improved with a much 

larger number of trials. Nevertheless, despite the relatively low accu
racy, the present data do represent an important first step in the direc
tion toward identifying the neural markers of stimulus identification 
that can be utilized to create a BCI that facilitates user learning in virtual 
environments.

This study aimed to address two key questions about the N400, with 
the long-term goal of developing an integrated AR-BCI learning system. 
While we did not directly assess learning in this study, we can consider 
how our proposed system might function as a learning aid, and which 
types of learning task it might benefit. In the introduction we described 
two learning scenarios where the proposed system could be used: 
learning from digital content (e.g., a medical student studying anatomy) 
or from physical world objects (e.g., someone learning a new language). 
In both scenarios, learners would look at an object, try to remember its 
name, and then see a text label that is either correct or incorrect. An 
N400 response would be expected if the label is incorrect and the learner 
is aware of the error. However, if the learner doesn’t know the correct 
name and doesn’t recognize the error, an N400 response would not be 
expected. AR has shown strong potential to be particularly effective and 
enjoyable for language learning compared to traditional methods 
(Ibrahim et al., 2018). However, learning from physical world objects 
presents significant challenges. It would require rapid and accurate 
recognition of a wide range of objects from various viewpoints, correct 
segmentation from other items, and near-real-time labeling (see Huynh 
et al., 2019a, Huynh et al., 2019b). Physical objects can also be 
ambiguous or have multiple names. Moreover, language learning in 
real-world settings would most likely involve the learner moving around 
in the environment, implying eye, head and body movements, and po
tential shifting of the system on the head, all of which increases EEG 
noise (discussed in the next paragraph). In contrast, implementing 
AR-BCI learning from a digital model may be easier. Digital models 
could be pre-programmed with all required text labels, and the learning 
environment would likely be more controlled (e.g., indoors, consistent 
lighting/temperature), minimizing movement-related EEG artifacts. For 
both learning scenarios, the system would maintain a record of suc
cessfully and unsuccessfully recognized items, allowing for the provision 
of feedback to support learning. The optimal method for delivering this 
feedback is a topic for future research, but potential approaches include 
immersive feedback in AR. For example, in the language learning 

Fig. 5. Classification. A logistic regression classifier was trained and tested across all trials and conditions using a 10-fold cross-validation approach. The model was 
evaluated at each time point using a sliding window approach, and its performance was quantified using the average balanced accuracy across validation folds. The 
horizontal bars at the base of the plot indicate timepoints where classification was significantly different from a permuted control in each condition (p < .05). The red 
and black horizontal lines at the top of the plot indicate timepoints where there was a main effect (p < .05) of judgement or stimulus type, respectively. Continuous 
error bars represent SEM. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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scenario, objects that the system identified as not having been correctly 
recognized by the user could be visually highlighted (e.g., by displaying 
a brightly colored frame around the object). In the medical student 
scenario, specific anatomical structures that the student has not recog
nized could be highlighted on the digital model. This immersive feed
back could be presented to the user either in near real-time or during a 
separate dedicated session. Additional studies are required to determine 
the most effective way to provide feedback, with careful consideration 
given to avoiding information overload for the user.

It is important to acknowledge a number of limitations of this highly 
controlled proof-of-concept study. First, our sample was a relatively 
small convenience sample of college students, largely drawn from psy
chology and computer science undergraduate cohorts. These students 
may have more experience with cognitive tasks and/or AR devices. 
While this homogeneity could limit the generalizability of our results to 
other populations, our university has a relatively large undergraduate 
student body (>20,000) and is a minority-serving institution, meaning 
at least 25 % of the student body identifies as being from an underrep
resented minority, indicating some heterogeneity in the sample. Second, 
our study purposefully selected stimuli that were easy to recognize and 
these were presented at fixation on a fixed time-schedule. We did not 
explicitly control our stimuli for visual complexity or word frequency, so 
it’s possible that our findings may not generalize to more complex ob
jects or less commonly used words. Participants were instructed to 
maintain fixation and minimize eye-movements. This approach differs 
from realistic retrieval-practice contexts, such as the anatomy or foreign 
language learning examples described in the introduction. In those sit
uations, objects may be more ambiguous, and users would likely move 
their eyes freely to explore the physical and/or digital environment. The 
system would then need to detect when the user’s gaze has dwelled on a 
critical object for a specified duration and initiate the presentation of a 
text label. Eye-movements disrupt patterns of brain activity (Bullock 
et al., 2023b; Irwin, 1996; Rolfs et al., 2011), so this will introduce 
additional noise into the system. Third, in the present study EEG was 
recorded using a research grade 64-channel gel electrode setup (Acti
CHamp, Brain Products), which has a number of benefits such as low 
electrode impedances and complete scalp coverage, but would be 
impractical for actual real-world use in a BCI because it needs to be set 
up by a trained experimenter and the application process takes around 
30–45 min. Instead, a BCI would be more likely to employ a more 
practical, lower-cost, consumer focused EEG system which will likely 
use fewer, dry electrodes, leading to higher impedances and reduced 
scalp coverage. Increased noise will reduce signal-to-noise ratio (SNR), 
potentially leading to less accurate classification. Furthermore, our 
hardware-trigger solution for AR-EEG synchronization requires custom 
hardware (StimTrak, Brain Products) and a headphone jack on the AR 
device, which may not be present on all AR devices. Fourth, our par
ticipants were seated in a temperature controlled room for the duration 
of the study. Under more realistic conditions a user might wear a BCI 
system while they are actively moving around the environment, mean
ing the system will have to contend with artifacts generated by the user’s 
body movements, muscle noise and perspiration, which can impact 
classifier performance (Ding et al., 2019). Indeed, it is feasible that AR 
might eventually replace (or complement) smartphones and watches for 
continuous information consumption while the user is on-the-go (i.e., 
walking around in the environment; Kim et al., 2022; Kumaran et al., 
2023), so any integrated BCI systems will also need to be robust to these 
large body movements. Furthermore, acute physical activity can impact 
cognitive function, with selective effects at specific stages of sensory and 
cognitive information processing in the human brain which could 
plausibly impact BCI performance (Bullock et al., 2015; Cao & Händel, 
2019; Garrett et al., 2021, 2024; Giesbrecht et al., 2025; Giesbrecht & 
Garrett, 2025). In summary, translating these findings into a practical 
AR-EEG learning system will require testing larger, more diverse sam
ples with a wider range of stimuli, while allowing for more natural eye, 
head, and body movements, and using a more practical EEG recording 

system.

5. Conclusion

In summary, this study represents an important first step in deter
mining whether the N400 is a viable signal for use in a combined AR- 
EEG retrieval-learning system. We also validated a novel hardware- 
based solution for synching stimuli presented in AR with EEG 
recording. We demonstrated that the brain responds differently to 
congruent and incongruent pairs of stimuli, regardless of whether the 
first stimulus is a 3D model or a word, and regardless of whether par
ticipants are making naming or association judgments. This study lays 
the groundwork for future experiments aimed at improving classifica
tion accuracy of brain responses. These studies will increase the size of 
the training set and also test classification performance with a broader 
demographic of users in more realistic scenarios, such as those involving 
EEG systems with fewer, dry electrodes and unrestricted eye, head, and 
body movements.
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